English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/129444
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Título

A novel clique formulation for the visual feature matching problem

AutorSan Segundo Carrillo, Pablo ; Artieda, Jorge
Palabras claveVisual matching
Image registration
3D reconstruction
Maximum clique
Branch-and-bound
Fecha de publicación2015
EditorKluwer Academic Publishers
CitaciónApplied Intelligence 43: 325- 342 (2015)
Resumen© 2015, Springer Science+Business Media New York. This paper presents CCMM (acronym for image Clique Matching), a new deterministic algorithm for the visual feature matching problem when images have low distortion. CCMM is multi-hypothesis, i.e. for each feature to be matched in the original image it builds an association graph which captures pairwise compatibility with a subset of candidate features in the target image. It then solves optimum joint compatibility by searching for a maximum clique. CCMM is shown to be more robust than traditional RANSAC-based single-hypothesis approaches. Moreover, the order of the graph grows linearly with the number of hypothesis, which keeps computational requirements bounded for real life applications such as UAV image mosaicing or digital terrain model extraction. The paper also includes extensive empirical validation.
URIhttp://hdl.handle.net/10261/129444
DOI10.1007/s10489-015-0646-1
Identificadoresdoi: 10.1007/s10489-015-0646-1
issn: 0924-669X
Aparece en las colecciones: (CAR) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.