English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/12908
Compartir / Impacto:
Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL

Quantum Gowdy T3 model: a uniqueness result

AutorCorichi, Alejandro; Cortez, Jerónimo; Mena Marugán, Guillermo A. ; Velhinho, José M.
Palabras clave[PACS] Quantum field theory in curved spacetime
[PACS] Canonical quantization
[PACS] Quantum cosmology
Fecha de publicación6-oct-2006
EditorInstitute of Physics Publishing
CitaciónClassical and Quantum gravity, 23: 6301-6319 (2006)
ResumenModulo a homogeneous degree of freedom and a global constraint, the linearly polarized Gowdy T3 cosmologies are equivalent to a free scalar field propagating in a fixed nonstationary background. Recently, a new field parametrization was proposed for the metric of the Gowdy spacetimes such that the associated scalar field evolves in a flat background in (1+1) dimensions with the spatial topology of S1, although subject to a time-dependent potential. Introducing a suitable Fock quantization for this scalar field, a quantum theory was constructed for the Gowdy model in which the dynamics is implemented as a unitary transformation. A question that was left open is whether one might adopt a different, nonequivalent Fock representation by selecting a distinct complex structure. The present work proves that the chosen Fock quantization is in fact unique (up to unitary equivalence) if one demands unitary implementation of the dynamics and invariance under the group of S1 translations. These translations are precisely those generated by the global constraint that remains on the Gowdy model. It is also shown that the proof of uniqueness in the choice of the complex structure can be applied to more general field dynamics than that corresponding to the Gowdy cosmologies.
Descripción19 pags. ; appendix
Versión del editorhttp://dx.doi.org/10.1088/0264-9381/23/22/014
Aparece en las colecciones: (CFMAC-IEM) Artículos
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Mostrar el registro completo

Artículos relacionados:

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.