English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/129069
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Diversity and biofilm-forming capability of bacteria recovered from stainless steel pipes of a milk-processing dairy plant

AutorCherif-Antarm, Asma; Moussa–Boudjemâa, Boumediene; Didouh, Nassima; Medjahdi, Khadidja; Mayo Pérez, Baltasar ; Flórez García, Ana Belén
Palabras claveMicrobial adherence
Milk-processing plant
Fecha de publicaciónene-2016
CitaciónDairy Science & Technology 96(1): 27-38 (2016)
ResumenBacteria may adhere to and develop biofilm structures onto dairy surfaces trying to protect themselves from adverse conditions such as pasteurization and CIP processes. Thus, biofilms are considered common sources of food contamination with undesirable bacteria. The purpose of this study was to evaluate the diversity of the microbiota attached to stainless steel surfaces in pre- and post-pasteurization pipe lines of a milk-processing plant. Seventy Gram-positive isolates were identified as Enterococcus faecalis (33), Bacillus cereus (26), Staphylococcus hominis (8), Staphylococcus saprophyticus (2), and Staphylococcus epidermidis-Staphylococcus aureus (1) species. Fifty-five Gram-negative isolates were identified to the species Escherichia coli (18), Klebsiella pneumoniae (13), Acinetobacter calcoaceticus (6), Serratia marcescens (6), Enterobacter spp. (5), Pseudomonas aeruginosa (4), Escherichia vulneris (2), and Proteus mirabilis (1). Fifty-five different strains were detected by the RAPD technique. These were subjected to an in vitro assay to evaluate their biofilm-forming capability. E. faecalis (7), A. calcoaceticus (4), K. pneumoniae (3), S. hominis (3), and P. aeruginosa (2) were the species in which more biofilm producer strains were encountered. The adhered microbiota was also assessed by the PCR-DGGE culture-independent technique. This analysis revealed a greater bacterial diversity than that revealed by culturing methods. In this way, in addition to the bacteria detected by culturing, DNA bands belonging to the genera Chrysobacterium and Streptomyces were also identified. This study emphasizes that knowledge of attached microorganisms to dairy surfaces may help develop strategies to improve optimal operational parameters for pasteurization and CIP processes in dairy plants.
Versión del editorhttp://dx.doi.org/10.1007/s13594-015-0235-4
Aparece en las colecciones: (IPLA) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
diversity_biofilm-forming_Cherif.pdf625,13 kBAdobe PDFVista previa
Mostrar el registro completo

Artículos relacionados:

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.