English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/128380
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:


Flavins secreted by roots of iron-deficient Beta vulgaris enable mining of ferric oxide via reductive mechanisms

AuthorsSisó-Terraza, Patricia ; Ríos Ruiz, Juan José ; Abadía Bayona, Javier ; Abadía Bayona, Anunciación ; Álvarez-Fernández, Ana
Issue DateJan-2016
PublisherJohn Wiley & Sons
CitationSisó-Terraza P, Rios JJ, Abadía J, Abadía A, Álvarez-Fernández A. Flavins secreted by roots of iron-deficient Beta vulgaris enable mining of ferric oxide via reductive mechanisms. New Phytologist 209 (2): 733–745 (2016)
AbstractIron (Fe) is abundant in soils but generally poorly soluble. Plants, with the exception of Graminaceae, take up Fe using an Fe(III)-chelate reductase coupled to an Fe(II) transporter. Whether or not nongraminaceous species can convert scarcely soluble Fe(III) forms into soluble Fe forms has deserved little attention so far. We have used Beta vulgaris, one among the many species whose roots secrete flavins upon Fe deficiency, to study whether or not flavins are involved in Fe acquisition. Flavins secreted by Fe-deficient plants were removed from the nutrient solution, and plants were compared with Fe-sufficient plants and Fe-deficient plants without flavin removal. Solubilization of a scarcely soluble Fe(III)-oxide was assessed in the presence or absence of flavins, NADH (nicotinamide adenine dinucleotide, reduced form) or plant roots, and an Fe(II) trapping agent. The removal of flavins from the nutrient solution aggravated the Fe deficiency-induced leaf chlorosis. Flavins were able to dissolve an Fe(III)-oxide in the presence of NADH. The addition of extracellular flavins enabled roots of Fe-deficient plants to reductively dissolve an Fe(III)-oxide. We concluded that root-secretion of flavins improves Fe nutrition in B. vulgaris. Flavins allow B. vulgaris roots to mine Fe from Fe(III)-oxides via reductive mechanisms.
Description13 Pags.- 10 Figs.
Appears in Collections:(EEAD) Artículos
Files in This Item:
File Description SizeFormat 
Acceso_Restringido.pdf15,38 kBAdobe PDFThumbnail
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.