English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/127906
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Título

Object-Based Image Classification of Summer Crop with Machine Learning Methods

AutorPeña, José María; Gutiérrez, Pedro Antonio; Hervás-Martínez, César; Six, Johan; Plant, Richard E.; López Granados, Francisca
Palabras claveAgriculture
Hierarchical classification
Neural networks
ASTER satellite images
Object-oriented image analysis
Fecha de publicación30-may-2014
EditorMultidisciplinary Digital Publishing Institute
CitaciónRemote Sensing 6(6): 5019- 5041 (2014)
ResumenThe strategic management of agricultural lands involves crop field monitoring each year. Crop discrimination via remote sensing is a complex task, especially if different crops have a similar spectral response and cropping pattern. In such cases, crop identification could be improved by combining object-based image analysis and advanced machine learning methods. In this investigation, we evaluated the C4.5 decision tree, logistic regression (LR), support vector machine (SVM) and multilayer perceptron (MLP) neural network methods, both as single classifiers and combined in a hierarchical classification, for the mapping of nine major summer crops (both woody and herbaceous) from ASTER satellite images captured in two different dates. Each method was built with different combinations of spectral and textural features obtained after the segmentation of the remote images in an object-based framework. As single classifiers, MLP and SVM obtained maximum overall accuracy of 88%, slightly higher than LR (86%) and notably higher than C4.5 (79%). The SVM+SVM classifier (best method) improved these results to 89%. In most cases, the hierarchical classifiers considerably increased the accuracy of the most poorly classified class (minimum sensitivity). The SVM+SVM method offered a significant improvement in classification accuracy for all of the studied crops compared to the conventional decision tree classifier, ranging between 4% for safflower and 29% for corn, which suggests the application of object-based image analysis and advanced machine learning methods in complex crop classification tasks.
Versión del editorhttp://dx.doi.org/10.3390/rs6065019
URIhttp://hdl.handle.net/10261/127906
DOI10.3390/rs6065019
Identificadoresissn: 2072-4292
Aparece en las colecciones: (IAS) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Object-Based Image Classification_Peña.pdf1,71 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.