English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/12770
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Reexamination of polytropic spheres in Palatini f(R) gravity

AutorOlmo, Gonzalo J.
Palabras clave[PACS] Relativistic stars: structure, stability, and oscillations
[PACS] Exact solutions in general relativity
[PACS] Experimental tests of gravitational theories
Fecha de publicación21-nov-2008
EditorAmerican Physical Society
CitaciónPhysical Review D, 78 (10), id. 104026 (2008)
ResumenWe investigate spherically symmetric, static matter configurations with polytropic equation of state for a class of f(R) models in Palatini formalism and show that the surface singularities recently reported in the literature are not physical in the case of Planck scale modified Lagrangians. In such cases, they are just an artifact of the idealized equation of state used. In fact, we show that for the models f(R)=R±lambdaR2, with lambda on the order of the Planck length squared, the presence of a single electron in the Universe would be enough to cure all stellar singularities of this type. From our analysis it also follows that the stellar structure derived from these Lagrangians is virtually undistinguishable from that corresponding to general relativity. For ultraviolet corrected models far from the Planck scale, however, the surface singularities may indeed arise in the region of validity of the polytropic equation of state. This fact can be used to place constraints on the parameters of particular models.
Descripción6 pags.
Versión del editorhttp://dx.doi.org/10.1103/PhysRevD.78.104026
Aparece en las colecciones: (CFMAC-IEM) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Olmo.pdf124,39 kBAdobe PDFVista previa
Mostrar el registro completo

Artículos relacionados:

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.