English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/127655
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

A comparative study between non-linear regression and artificial neural network approaches for modelling wild oat (Avena fatua) field emergence

AutorChantrell, G. R.; Blanco, Antonio M.; Forcella, Frank; Acker, Rene C. van; Sabbatini, M. R.; González-Andújar, José Luis
Fecha de publicación23-ene-2013
EditorCambridge University Press
CitaciónJournal of Agricultural Science 152(2): 254- 262 (2014)
ResumenNon-linear regression (NLR) techniques are used widely to fit weed field emergence patterns to soil microclimatic indices using S-type functions. Artificial neural networks (ANNs) present interesting and alternative features for such modelling purposes. In the present work, a univariate hydrothermal-time based Weibull model and a bivariate (hydro-time and thermal-time) ANN were developed to study wild oat emergence under non-moisture restriction conditions using data from different locations worldwide. Results indicated a higher accuracy of the neural network in comparison with the NLR approach due to the improved descriptive capacity of thermal-time and the hydro-time as independent explanatory variables. The bivariate ANN model outperformed the conventional Weibull approach, in terms of RMSE of the test set, by 70·8%. These outcomes suggest the potential applicability of the proposed modelling approach in the design of weed management decision support systems.
Versión del editorhttp://dx.doi.org/10.1017/S0021859612001098
URIhttp://hdl.handle.net/10261/127655
DOI10.1017/S0021859612001098
Identificadoresdoi: 10.1017/S0021859612001098
issn: 1469-5146
Aparece en las colecciones: (IAS) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.