English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/127514
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Chromatic shadow detection and tracking for moving foreground segmentation

AutorHuerta, Iván; Holte, Michael B.; Moeslund, Thomas B.; Gonzàlez, Jordi
Palabras claveChromatic shadow detection
Detecting moving objects
Shadow tracking
Spatial and temporal brightness and angle distortions
Temporal local gradient
Fecha de publicación2015
CitaciónImage and Vision Computing 41: 42-53 (2015)
ResumenAdvanced segmentation techniques in the surveillance domain deal with shadows to avoid distortions when detecting moving objects. Most approaches for shadow detection are still typically restricted to penumbra shadows and cannot cope well with umbra shadows. Consequently, umbra shadow regions are usually detected as part of moving objects, thus affecting the performance of the final detection. In this paper we address the detection of both penumbra and umbra shadow regions. First, a novel bottom-up approach is presented based on gradient and colour models, which successfully discriminates between chromatic moving cast shadow regions and those regions detected as moving objects. In essence, those regions corresponding to potential shadows are detected based on edge partitioning and colour statistics. Subsequently (i) temporal similarities between textures and (ii) spatial similarities between chrominance angle and brightness distortions are analysed for each potential shadow region for detecting the umbra shadow regions. Our second contribution refines even further the segmentation results: a tracking-based top-down approach increases the performance of our bottom-up chromatic shadow detection algorithm by properly correcting non-detected shadows. To do so, a combination of motion filters in a data association framework exploits the temporal consistency between objects and shadows to increase the shadow detection rate. Experimental results exceed current state-of-the-art in shadow accuracy for multiple well-known surveillance image databases which contain different shadowed materials and illumination conditions.
Versión del editorhttp://dx.doi.org/10.1016/j.imavis.2015.06.003
Identificadoresissn: 0262-8856
Aparece en las colecciones: (IRII) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
foreground-segmentation.pdf6,02 MBAdobe PDFVista previa
Mostrar el registro completo

Artículos relacionados:

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.