English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/127498
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Consistent depth video segmentation using adaptive surface models

AutorHusain, Farzad ; Dellen, Babette ; Torras, Carme
Palabras claveSurface fitting
Shape
Motion
Segmentation
Range data
Fecha de publicación2015
EditorInstitute of Electrical and Electronics Engineers
CitaciónIEEE Transactions on Cybernetics 45(2): 266-278 (2015)
ResumenWe propose a new approach for the segmentation of 3-D point clouds into geometric surfaces using adaptive surface models. Starting from an initial configuration, the algorithm converges to a stable segmentation through a new iterative split-And-merge procedure, which includes an adaptive mechanism for the creation and removal of segments. This allows the segmentation to adjust to changing input data along the movie, leading to stable, temporally coherent, and traceable segments. We tested the method on a large variety of data acquired with different range imaging devices, including a structured-light sensor and a time-of-flight camera, and successfully segmented the videos into surface segments. We further demonstrated the feasibility of the approach using quantitative evaluations based on ground-truth data.
Versión del editorhttp://dx.doi.org/10.1109/TCYB.2014.2324815
URIhttp://hdl.handle.net/10261/127498
DOI10.1109/TCYB.2014.2324815
Identificadoresdoi: 10.1109/TCYB.2014.2324815
issn: 2168-2267
e-issn: 2168-2275
Aparece en las colecciones: (IRII) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Surface-Models-.pdf13,71 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.