English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/127366
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Learning RGB-D descriptors of garment parts for informed robot grasping

AutorRamisa, Arnau; Alenyà, Guillem ; Moreno-Noguer, Francesc; Torras, Carme
Palabras claveClassification
Machine learning
Computer vision
Garment part detection
Bag of visual words
Pattern recognition
Fecha de publicación2014
CitaciónEngineering Applications of Artificial Intelligence 35: 246-258 (2014)
ResumenRobotic handling of textile objects in household environments is an emerging application that has recently received considerable attention thanks to the development of domestic robots. Most current approaches follow a multiple re-grasp strategy for this purpose, in which clothes are sequentially grasped from different points until one of them yields a desired configuration. In this work we propose a vision-based method, built on the Bag of Visual Words approach, that combines appearance and 3D information to detect parts suitable for grasping in clothes, even when they are highly wrinkled. We also contribute a new, annotated, garment part dataset that can be used for benchmarking classification, part detection, and segmentation algorithms. The dataset is used to evaluate our approach and several state-of-the-art 3D descriptors for the task of garment part detection. Results indicate that appearance is a reliable source of information, but that augmenting it with 3D information can help the method perform better with new clothing items.
Versión del editorhttp://dx.doi.org/10.1016/j.engappai.2014.06.025
Identificadoresissn: 0952-1976
Aparece en las colecciones: (IRII) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Learning-RGB-D.pdf1,05 MBAdobe PDFVista previa
Mostrar el registro completo

Artículos relacionados:

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.