English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/127340
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Exploration on continuous Gaussian process frontier maps

AutorJadidi, Maani Ghaffari; Valls Miró, Jaime; Valencia, Rafael; Andrade-Cetto, Juan
Fecha de publicación2014
EditorInstitute of Electrical and Electronics Engineers
CitaciónIEEE International Conference on Robotics and Automation: 6077-6082 (2014)
ResumenAn information-driven autonomous robotic explo- ration method on a continuous representation of unknown envi- ronments is proposed in this paper. The approach conveniently handles sparse sensor measurements to build a continuous model of the environment that exploits structural dependencies without the need to resort to a fixed resolution grid map. A gradient field of occupancy probability distribution is regressed from sensor data as a Gaussian process providing frontier boundaries for further exploration. The resulting continuous global frontier surface completely describes unexplored regions and, inherently, provides an automatic stop criterion for a desired sensitivity. The performance of the proposed approach is evaluated through simulation results in the well-known Freiburg and Cave maps.
DescripciónPresentado al ICRA 2014 celebrado en Hong Kong del 31 de mayo al 7 de junio.
Versión del editorhttp://dx.doi.org/10.1109/ICRA.2014.6907754
URIhttp://hdl.handle.net/10261/127340
DOI10.1109/ICRA.2014.6907754
Identificadoresissn: 1050-4729
Aparece en las colecciones: (IRII) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
frontier-maps.pdf6,05 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.