English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/127313
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Bayesian Human Motion Intentionality Prediction in urban environments

AutorFerrer, Gonzalo ; Sanfeliu, Alberto
Palabras claveCrowd analysis
Pattern recognition
Human motion prediction
Fecha de publicación2014
EditorElsevier
CitaciónPattern Recognition Letters 44: 134-140 (2014)
ResumenHuman motion prediction in indoor and outdoor scenarios is a key issue towards human robot interaction and intelligent robot navigation in general. In the present work, we propose a new human motion intentionality indicator, denominated Bayesian Human Motion Intentionality Prediction (BHMIP), which is a geometric-based long-term predictor. Two variants of the Bayesian approach are proposed, the Sliding Window BHMIP and the Time Decay BHMIP. The main advantages of the proposed methods are: a simple formulation, easily scalable, portability to unknown environments with small learning effort, low computational complexity, and they outperform other state of the art approaches. The system only requires training to obtain the set of destinations, which are salient positions people normally walk to, that configure a scene. A comparison of the BHMIP is done with other well known methods for long-term prediction using the Edinburgh Informatics Forum pedestrian database and the Freiburg People Tracker database.
Versión del editorhttp://dx.doi.org/10.1016/j.patrec.2013.08.013
URIhttp://hdl.handle.net/10261/127313
DOI10.1016/j.patrec.2013.08.013
Identificadoresissn: 0167-8655
Aparece en las colecciones: (IRII) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Bayesian Human Motion.null613,47 kBUnknownVisualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.