English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/127312
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Approaching dual quaternions from matrix algebra

AutorThomas, Federico
Fecha de publicación2014
EditorInstitute of Electrical and Electronics Engineers
CitaciónIEEE Transactions on Robotics 30(5): 1037-1048 (2014)
ResumenDual quaternions give a neat and succinct way to encapsulate both translations and rotations into a unified representation that can easily be concatenated and interpolated. Unfortunately, the combination of quaternions and dual numbers seems quite abstract and somewhat arbitrary when approached for the first time. Actually, the use of quaternions or dual numbers separately is already seen as a break in mainstream robot kinematics, which is based on homogeneous transformations. This paper shows how dual quaternions arise in a natural way when approximating 3-D homogeneous transformations by 4-D rotation matrices. This results in a seamless presentation of rigid-body transformations based on matrices and dual quaternions, which permits building intuition about the use of quaternions and their generalizations.
Versión del editorhttp://dx.doi.org/10.1109/TRO.2014.2341312
URIhttp://hdl.handle.net/10261/127312
DOI10.1109/TRO.2014.2341312
Identificadoresissn: 1552-3098
e-issn: 1941-0468
Aparece en las colecciones: (IRII) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Matrix-Algebra.pdf231,85 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.