English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/126978
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Momentum dependence of spin-orbit interaction effects in single-layer and multi-layer transition metal dichalcogenides

AuthorsRoldán, Rafael ; López-Sancho, María Pilar ; Guinea, F. ; Cappelluti, E. ; Silva-Guillén, José Ángel; Ordejón, Pablo
KeywordsElectronic band structure
Spin–orbit interaction
Transition metal dichalcogenides
Issue Date2014
PublisherInstitute of Physics Publishing
Citation2D Materials 1(3): 034003 (2014)
AbstractOne of the main characteristics of the new family of two-dimensional crystals of semiconducting transition metal dichalcogenides (TMDs) is the strong spin–orbit interaction, which makes them very promising for future applications in spintronics and valleytronics devices. Here we present a detailed study of the effect of spin–orbit coupling (SOC) on the band structure of single-layer and bulk TMDs, including explicitly the role of the chalcogen orbitals and their hybridization with the transition metal atoms. To this aim, we combine density functional theory (DFT) calculations with a Slater–Koster tight-binding (TB) model. Whereas most of the previous TB models have been restricted to the K and K' points of the Brillouin zone (BZ), here we consider the effect of SOC in the whole BZ, and the results are compared to the band structure obtained by DFT methods. The TB model is used to analyze the effect of SOC in the band structure, considering separately the contributions from the transition metal and the chalcogen atoms. Finally, we present a scenario where, in the case of strong SOC, the spin/orbital/valley entanglement at the minimum of the conduction band at Q can be probed and be of experimental interest in the most common cases of electron-doping reported for this family of compounds.
Identifiersdoi: 10.1088/2053-1583/1/3/034003
e-issn: 2053-1583
Appears in Collections:(CIN2) Artículos
(ICMM) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
Show full item record

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.