English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/126806
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Modeling the effects of light and sucrose on in vitro propagated plants: A multiscale system analysis using artificial intelligence technology

AutorGago, Jorge; Martínez-Núñez, Lourdes; Landín, Mariana; Flexas, Jaume; Gallego, Pedro Pablo
Fecha de publicación20-ene-2014
EditorPublic Library of Science
CitaciónPLoS ONE 9(1):e85989 (2014)
ResumenBackground: Plant acclimation is a highly complex process, which cannot be fully understood by analysis at any one specific level (i.e. subcellular, cellular or whole plant scale). Various soft-computing techniques, such as neural networks or fuzzy logic, were designed to analyze complex multivariate data sets and might be used to model large such multiscale data sets in plant biology. Methodology and Principal Findings: In this study we assessed the effectiveness of applying neuro-fuzzy logic to modeling the effects of light intensities and sucrose content/concentration in the in vitro culture of kiwifruit on plant acclimation, by modeling multivariate data from 14 parameters at different biological scales of organization. The model provides insights through application of 14 sets of straightforward rules and indicates that plants with lower stomatal aperture areas and higher photoinhibition and photoprotective status score best for acclimation. The model suggests the best condition for obtaining higher quality acclimatized plantlets is the combination of 2.3% sucrose and photonflux of 122-130 μmol m-2 s -1. Conclusions: Our results demonstrate that artificial intelligence models are not only successful in identifying complex nonlinear interactions among variables, by integrating large-scale data sets from different levels of biological organization in a holistic plant systems-biology approach, but can also be used successfully for inferring new results without further experimental work. © 2014 Gago et al.
Versión del editorhttp://dx.doi.org/10.1371/journal.pone.0085989
Identificadoresdoi: 10.1371/journal.pone.0085989
issn: 1932-6203
Aparece en las colecciones: (IMEDEA) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Gago-PLoS-ONE-2014-v9-e0085989.pdf1,01 MBAdobe PDFVista previa
Mostrar el registro completo

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.