English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/126455
Compartir / Impacto:
Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL

Importance of torsion and invariant volumes in Palatini theories of gravity

AutorOlmo, Gonzalo J. ; Rubiera-García, D.
Palabras claveGeneral-relativity
Cosmological constant
Fecha de publicación22-sep-2013
EditorAmerican Physical Society
CitaciónPhysical Review - Section D - Particles and Fields 88 (8): 084030 - 11 (2013)
ResumenWe study the field equations of extensions of general relativity formulated within a metric-affine formalism setting torsion to zero (Palatini approach). We find that different (second-order) dynamical equations arise depending on whether torsion is set to zero (i) a priori or (ii) a posteriori, i.e., before or after considering variations of the action. Considering a generic family of Ricci-squared theories, we show that in both cases the connection can be decomposed as the sum of a Levi-Civita connection and terms depending on a vector field. However, while in case (i) this vector field is related to the symmetric part of the connection, in (ii) it comes from the torsion part and, therefore, it vanishes once torsion is completely removed. Moreover, the vanishing of this torsion-related vector field immediately implies the vanishing of the antisymmetric part of the Ricci tensor, which therefore plays no role in the dynamics. Related to this, we find that the Levi-Civita part of the connection is due to the existence of an invariant volume associated with an auxiliary metric h(mu v), which is algebraically related with the physical metric g(mu v).
Versión del editorhttp://dx.doi.org/10.1103/PhysRevD.88.084030
Aparece en las colecciones: (IFIC) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Importance of torsion.pdf249,79 kBAdobe PDFVista previa
Mostrar el registro completo

Artículos relacionados:

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.