English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/126331
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Título

Optimization of an artificial neural network for thermal/pressure food processing: Evaluation of training algorithms

AutorTorrecilla, J. S.; Otero, Laura ; Sanz Martínez, Pedro Dimas
Fecha de publicación2007
EditorElsevier
CitaciónComputers and Electronics in Agriculture 56: 101- 110 (2007)
ResumenThe aim of the current paper is to obtain, through a proper selection of the training algorithm, an optimized artificial neural network (ANN) able to predict two parameters of interest for high-pressure (HP) food processing: the maximum or minimum temperature reached in the sample after pressurization and the time needed for thermal re-equilibration in the high-pressure process. To do that, 13 training algorithms belonging to 4 broad classes (gradient descent, conjugate gradient, quasi-Newton algorithms and Bayesian regularization) have been evaluated by training different ANNs. The network trained with the Levenberg-Marquardt algorithm showed the best overall predictive ability. The performance of this network was subsequently optimized by varying the number of nodes in the hidden layer, the learning coefficient and the decrease factor of this coefficient, and selecting the configuration with the highest predictive ability. The optimized ANN was able to make accurate predictions for the variables studied (temperature and time). These predictions were significantly better than those obtained by a previous ANN developed without selection of the training algorithm, that is, assuming the default option of the ANN computational package (gradient descent with a user-defined learning rate). We have shown that a correct selection of the training algorithm allows maximizing the predictive ability of the artificial neural network. © 2007 Elsevier B.V. All rights reserved.
URIhttp://hdl.handle.net/10261/126331
DOI10.1016/j.compag.2007.01.005
Identificadoresdoi: 10.1016/j.compag.2007.01.005
issn: 0168-1699
Aparece en las colecciones: (IF) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.