English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/126293
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

Confounding Environmental Colour and Distribution Shape Leads to Underestimation of Population Extinction Risk

AuthorsFowler, Mike S.; Ruokolainen, Lasse
Issue Date11-Feb-2013
PublisherPublic Library of Science
CitationPLoS ONE 8(2): e55855 (2013)
AbstractThe colour of environmental variability influences the size of population fluctuations when filtered through density dependent dynamics, driving extinction risk through dynamical resonance. Slow fluctuations (low frequencies) dominate in red environments, rapid fluctuations (high frequencies) in blue environments and white environments are purely random (no frequencies dominate). Two methods are commonly employed to generate the coloured spatial and/or temporal stochastic (environmental) series used in combination with population (dynamical feedback) models: autoregressive [AR(1)] and sinusoidal (1/f) models. We show that changing environmental colour from white to red with 1/f models, and from white to red or blue with AR(1) models, generates coloured environmental series that are not normally distributed at finite time-scales, potentially confounding comparison with normally distributed white noise models. Increasing variability of sample Skewness and Kurtosis and decreasing mean Kurtosis of these series alter the frequency distribution shape of the realised values of the coloured stochastic processes. These changes in distribution shape alter patterns in the probability of single and series of extreme conditions. We show that the reduced extinction risk for undercompensating (slow growing) populations in red environments previously predicted with traditional 1/f methods is an artefact of changes in the distribution shapes of the environmental series. This is demonstrated by comparison with coloured series controlled to be normally distributed using spectral mimicry. Changes in the distribution shape that arise using traditional methods lead to underestimation of extinction risk in normally distributed, red 1/f environments. AR(1) methods also underestimate extinction risks in traditionally generated red environments. This work synthesises previous results and provides further insight into the processes driving extinction risk in model populations. We must let the characteristics of known natural environmental covariates (e.g., colour and distribution shape) guide us in our choice of how to best model the impact of coloured environmental variation on population dynamics. © 2013 Fowler, Ruokolainen.
Publisher version (URL)http://dx.doi.org/10.1371/journal.pone.0055855
URIhttp://hdl.handle.net/10261/126293
DOI10.1371/journal.pone.0055855
Identifiersdoi: 10.1371/journal.pone.0055855
issn: 1932-6203
Appears in Collections:(IMEDEA) Artículos
Files in This Item:
File Description SizeFormat 
Fowler-PLoS-ONE-2013-v8-e55855.pdf702,97 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.