English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/126212
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

The influence of sediment sources on radium-derived estimates of Submarine Groundwater Discharge

AuthorsRodellas, Valentí; García-Orellana, Jordi; Masqué, Pere; Font-Muñoz, Joan S.
KeywordsMediterranean Sea
Radium isotopes
Sediments
Submarine Groundwater Discharge
Issue Date21-Feb-2015
PublisherElsevier
CitationMarine Chemistry 171: 107-117 (2015)
Abstract© 2015 Elsevier B.V. The influence of sediments on the determination of SGD by using Ra isotopes was investigated in the Port of Maó (Balearic Islands, NW Mediterranean). This natural harbor was selected because SGD occurs all along its southern boundary and it is covered by fine-grained sediments that are frequently resuspended due to vessel maneuvering. Comprehensive seasonal Ra mass balances were constructed for the waters of the Port of Maó using both short-lived (224Ra) and long-lived (228Ra) Ra isotopes. SGD flows to the Port of Maó obtained by using 228Ra revealed a seasonal pattern, likely dominated by the recharge cycle, with maximum SGD rates during the wet seasons ((180±100)·103m3·day-1 in fall) and minimum flows during summer ((56±35)·103m3·day-1). The results also showed that the Ra flux from bottom sediments, through diffusion and due to releases associated to resuspension events, represented a significant source of Ra to the harbor waters. This sedimentary source accounted for a major fraction of the 224Ra supplied to the system (30-90%, depending on the season), whereas the sediment influence on the 228Ra mass balance was significantly lower (10-40%) due to its slower production rate. These findings suggested that attributing Ra inputs to the water column solely to SGD in systems covered by fine-grained sediments and/or affected by processes that favor Ra exchange across the sediment-water interface might not be accurate, requiring a detailed evaluation of the sediment sources. The inputs from sediments are often difficult to quantify, but using long-lived Ra isotopes to estimate the SGD flow may minimize the effect of a poor characterization of the sediment source.
Publisher version (URL)http://dx.doi.org/10.1016/j.marchem.2015.02.010
URIhttp://hdl.handle.net/10261/126212
DOI10.1016/j.marchem.2015.02.010
Identifiersdoi: 10.1016/j.marchem.2015.02.010
issn: 0304-4203
Appears in Collections:(IMEDEA) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.