Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/125803
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Campo DC Valor Lengua/Idioma
dc.contributor.authorAmaya-Gómez, Carol V.-
dc.contributor.authorHirsch, Ann M.-
dc.contributor.authorSoto, María José-
dc.date.accessioned2015-11-25T17:51:55Z-
dc.date.available2015-11-25T17:51:55Z-
dc.date.issued2015-03-03-
dc.identifier.citationBMC Microbiology 15(1): 58 (2015)-
dc.identifier.issn1471-2180-
dc.identifier.urihttp://hdl.handle.net/10261/125803-
dc.description.abstract[Background] Swarming motility and biofilm formation are opposite, but related surface-associated behaviors that allow various pathogenic bacteria to colonize and invade their hosts. In Sinorhizobium meliloti, the alfalfa endosymbiont, these bacterial processes and their relevance for host plant colonization are largely unexplored. Our previous work demonstrated distinct swarming abilities in two S. meliloti strains (Rm1021 and GR4) and revealed that both environmental cues (iron concentration) and bacterial genes (fadD, rhb, rirA) play crucial roles in the control of surface motility in this rhizobial species. In the current study, we investigate whether these factors have an impact on the ability of S. meliloti to establish biofilms and to colonize host roots.-
dc.description.abstract[Results] We found that strain GR4, which is less prone to translocate on solid surfaces than strain Rm1021, is more efficient in developing biofilms on glass and plant root surfaces. High iron conditions, known to prevent surface motility in a wild-type strain of S. meliloti, promote biofilm development in Rm1021 and GR4 strains by inducing the formation of more structured and thicker biofilms than those formed under low iron levels. Moreover, three different S. meliloti mutants (fadD, rhb, and rirA) that exhibit an altered surface translocation behavior compared with the wild-type strain, establish reduced biofilms on both glass and alfalfa root surfaces. Iron-rich conditions neither rescue the defect in biofilm formation shown by the rhb mutant, which is unable to produce the siderophore rhizobactin 1021 (Rhb1021), nor have any impact on biofilms formed by the iron-response regulator rirA mutant. On the other hand, S. meliloti FadD loss-of-function mutants do not establish normal biofilms irrespective of iron levels.-
dc.description.abstract[Conclusions] Our studies show that siderophore Rhb1021 is not only required for surface translocation, but also for biofilm formation on glass and root surfaces by strain Rm1021. In addition, we present evidence for the existence of control mechanisms that inversely regulate swarming and biofilm formation in S. meliloti, and that contribute to efficient plant root colonization. One of these mechanisms involves iron levels and the iron global regulator RirA. The other mechanism involves the participation of the fatty acid metabolism-related enzyme FadD.-
dc.description.sponsorshipThis work was supported by grants BIO2007-62988, BIO2010-18005, and BIO2013-42801-P from the Ministerio de Ciencia e Innovación (MICINN, Spain), CVI 03541 from the Junta de Andalucía (Spain), and FEDER funds. CAVG was supported by a FPI fellowship from MICINN. Work in the Hirsch lab was funded by grant IOB-0537497 from the National Science Foundation (USA). We acknowledge support by the CSIC Open Access Publication Initiative through its Unit of Information Resources for Research (URICI)-
dc.publisherBioMed Central-
dc.relation.isversionofPublisher's version-
dc.rightsopenAccess-
dc.subjectFadD-
dc.subjectIron-
dc.subjectRhizobium-
dc.subjectRirA-
dc.subjectRoot colonization-
dc.subjectSiderophore-
dc.subjectSwarming-
dc.titleBiofilm formation assessment in Sinorhizobium meliloti reveals interlinked control with surface motility-
dc.typeartículo-
dc.identifier.doi10.1186/s12866-015-0390-z-
dc.description.peerreviewedPeer reviewed-
dc.relation.publisherversionhttp://dx.doi.org/10.1186/s12866-015-0390-z-
dc.date.updated2015-11-25T17:51:55Z-
dc.language.rfc3066en-
dc.rights.holderAmaya-Gómez et al.; licensee BioMed Central.-
dc.rights.licensehttp://​creativecommons.​org/​licenses/​by/​4.​0-
dc.contributor.funderMinisterio de Ciencia e Innovación (España)-
dc.contributor.funderJunta de Andalucía-
dc.contributor.funderEuropean Commission-
dc.contributor.funderNational Science Foundation (US)-
dc.contributor.funderCSIC - Unidad de Recursos de Información Científica para la Investigación (URICI)-
dc.relation.csic-
dc.identifier.funderhttp://dx.doi.org/10.13039/501100004837es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100000780es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/100000001es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100011011es_ES
dc.identifier.pmid25887945-
dc.type.coarhttp://purl.org/coar/resource_type/c_6501es_ES
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.openairetypeartículo-
item.grantfulltextopen-
Aparece en las colecciones: (EEZ) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato
12866_2015_Article_390.pdf2,01 MBAdobe PDFVista previa
Visualizar/Abrir
Show simple item record

CORE Recommender

PubMed Central
Citations

16
checked on 22-mar-2024

SCOPUSTM   
Citations

39
checked on 15-abr-2024

WEB OF SCIENCETM
Citations

35
checked on 25-feb-2024

Page view(s)

233
checked on 16-abr-2024

Download(s)

260
checked on 16-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


Artículos relacionados:


Este item está licenciado bajo una Licencia Creative Commons Creative Commons