English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/125234
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:


Robust and efficient parameter estimation in dynamic models of biological systems

AuthorsGábor, Attila; Banga, Julio R.
KeywordsParameter estimation
Dynamic models
Global optimization
Issue Date29-Oct-2015
PublisherBioMed Central
CitationBMC Systems Biology 9: 74 (2015)
Abstract[Background] Dynamic modelling provides a systematic framework to understand function in biological systems. Parameter estimation in nonlinear dynamic models remains a very challenging inverse problem due to its nonconvexity and ill-conditioning. Associated issues like overfitting and local solutions are usually not properly addressed in the systems biology literature despite their importance. Here we present a method for robust and efficient parameter estimation which uses two main strategies to surmount the aforementioned difficulties: (i) efficient global optimization to deal with nonconvexity, and (ii) proper regularization methods to handle ill-conditioning. In the case of regularization, we present a detailed critical comparison of methods and guidelines for properly tuning them. Further, we show how regularized estimations ensure the best trade-offs between bias and variance, reducing overfitting, and allowing the incorporation of prior knowledge in a systematic way.
[Results] We illustrate the performance of the presented method with seven case studies of different nature and increasing complexity, considering several scenarios of data availability, measurement noise and prior knowledge. We show how our method ensures improved estimations with faster and more stable convergence. We also show how the calibrated models are more generalizable. Finally, we give a set of simple guidelines to apply this strategy to a wide variety of calibration problems.
[Conclusions] Here we provide a parameter estimation strategy which combines efficient global optimization with a regularization scheme. This method is able to calibrate dynamic models in an efficient and robust way, effectively fighting overfitting and allowing the incorporation of prior information.
Description25 páginas, 10 figuras, 2 tablas.-- This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
Publisher version (URL)http://dx.doi.org/10.1186/s12918-015-0219-2
Appears in Collections:(IIM) Artículos
Files in This Item:
File Description SizeFormat 
Robust_efficient_parameter.pdf1,26 MBAdobe PDFThumbnail
Show full item record
Review this work

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.