English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/124445
Compartir / Impacto:
Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL

Exploiting the multiscale synergy among ocean variables: Application to the improvement of remote sensing salinity maps

AutorUmbert, Marta
DirectorTuriel, Antonio ; Ballabrera-Poy, Joaquim
Fecha de publicación23-oct-2015
EditorUniversidad Politécnica de Cataluña
Resumen[EN] Remote sensing imagery of the ocean surface provides a synoptic view of the complex geometry of ocean circulation, which is dominated by mesoscale variability. The signature of filaments and vortices is present in different ocean scalars advected by the oceanic flow. The most probable origin of the observed structures is the turbulent character of ocean currents, and those signatures are persistent over time scales compatible with ocean mesoscale dynamics. Atspatial scales of kilometers or more, turbulence is mainly 2D, and a complex geometry, full of filaments and eddies of different sizes, emerges in remote sensing images of surface chlorophyll-a concentration and surface salinity, as well as in other scalars acquired with higher quality such as surface temperature and absolute dynamic topography. The aim of this thesis is to explore and apply mapping methodologies to improve the quality of remote sensing maps in general, but focusing in the case of remotely sensed sea surface salinity (SSS) data. The different methodologies studied in this thesis have been applied with the specific goal of improving surface salinity maps generated from data acquired by the European Space Agency’s mission SMOS, the first satellite able to measure soil moisture and ocean salinity from space at a global scale. The first part of this thesis will introduce the characteristics of the operational SMOS Level 2 (L2) SSS products and the classical approaches to produce the best possible SSS maps at Level 3 (L3), namely data filtering, weighted average and Optimal Interpolation. In the course of our research we will obtain a set of recommendations about how to process SMOS data starting from L2 data. A fusion technique designed to exploit the common turbulent signatures between different ocean variables is also explored in this thesis, in what represents a step forward from L3 to Level 4 (L4). This fusion technique is theoretically based on the geometrical properties of advected tracers (Turiel et al., 2005a). Due to the effect of the strong shear in turbulent flows, the spatial structure of tracers inherit some properties of the underlying flow and, in particular, its geometrical arrangement. As a consequence, different ocean variables exhibit scaling properties, similar to the turbulent energy cascade (Seuront and Schmitt, 2005; Nieves et al., 2007; Nieves and Turiel, 2009; Isern-Fontanet et al., 2007). The fusion method takes a signal affected by noise, data gaps and/or low resolution, and improves it in a geophysically meaningful way. This signal improvement is achieved by using an appropriate data, which is another ocean variable acquired with higher quality, greater spatial coverage and/or finer resolution. A key point in this approach is the assumption of the existence of a multifractal structure in ocean images (Lovejoy et al., 2001b), and that singularity lines of the different ocean variables coincide. Under these assumptions, the horizontal gradients of both variables, signal and template, can be related by a smooth matrix. The first, simplest approach to exploit such an hypothesis assumes that the relating matrix is proportional to the identity, leading to a local regression scheme. As shown in the thesis, this simple approach allows reducing the error and improving the coverage of the resulting Level 4 product; Moreover, information about the statistical relationship between the two fields is obtained since the functional dependence between signal and template is determined at each point
[CAT] Les imatges de teledetecció de la superfície oceànica proporcionen una vista sinòptica de la complexa geometria de la circulació oceànica, dominada per la variabilitat de mesoescala. Estructures com filaments i vòrtex són presents en els diferents escalars advectats pel flux oceànic. L’origen més probable d’aquestes estructures és el caràcter turbulent dels corrents, aquestes estructures són persistents amb el temps i compatibles amb la dinàmica mesoscalar oceànica. [...]
DescripciónMemoria de tesis doctoral presentada por Marta Umbert Ceresuela para obtener el título de Doctora en Ciencias Marinas por la Universitat Politècnica de Catalunya (UPC), realizada bajo la dirección del Dr. Antonio Turiel Martínez y del Dr. Joaquim Ballabrera Poy del Institut de Ciències del Mar (ICM-CSIC).-- 190 pages
Aparece en las colecciones: (ICM) Tesis
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Tesi_marta umbert.pdf12,34 MBAdobe PDFVista previa
Mostrar el registro completo

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.