English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/124329
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Parallel metaheuristics in computational biology: an asynchronous cooperative enhanced scatter search method

AutorPenas, David R.; González, Patricia; Egea, José A. ; Banga, Julio R. ; Doallo, Ramón
Palabras claveComputational Systems Biology
Parallel Metaheuristics
Enhanced Scatter Search
Fecha de publicación2015
CitaciónProcedia Computer Science 51: 630-639 (2015)
ResumenMetaheuristics are gaining increased attention as efficient solvers for hard global optimization problems arising in bioinformatics and computational systems biology. Scatter Search (SS) is one of the recent outstanding algorithms in that class. However, its application to very hard problems, like those considering parameter estimation in dynamic models of systems biology, still results in excessive computation times. In order to reduce the computational cost of the SS and improve its success, several research efforts have been made to propose different variants of the algorithm, including parallel approaches. This work presents an asynchronous Cooperative enhanced Scatter Search (aCeSS) based on the parallel execution of different enhanced Scatter Search threads and the cooperation between them. The main features of the proposed solution are: low overhead in the cooperation step, by means of an asynchronous protocol to exchange information between processes; more effectiveness of the cooperation step, since the exchange of information is driven by quality of the solution obtained in each process, rather than by a time elapsed; optimal use of available resources, thanks to a complete distributed approach that avoids idle processes at any moment. Several challenging parameter estimation problems from the domain of computational systems biology are used to assess the efficiency of the proposal and evaluate its scalability in a parallel environment
Descripción10 páginas, 3 figuras, 1 tabla.-- International Conference On Computational Science, ICCS 2015, Computational Science at the Gates of Nature.-- Under a Creative Commons license
Versión del editorhttp://dx.doi.org/10.1016/j.procs.2015.05.331
Aparece en las colecciones: (IIM) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Parallel_metaheuristics_computational_biology.pdf260,73 kBAdobe PDFVista previa
Mostrar el registro completo

Artículos relacionados:

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.