English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/124099
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:


Evidence for plasticity in the frequency of skipped breeding opportunities in common toads

AuthorsMuths, Erin; Scherer, Rick D.; Bosch, Jaime
Issue Date25-May-2013
CitationPopulation Ecology 55(4): 535-544 (2013)
AbstractBreeding is limited by energetic or environmental constraints and long-lived species sometimes skip breeding opportunities. Environmental conditions may vary considerably across the geographic and elevational range of a species and species that can respond through variation in life history strategies are likely to maintain populations at the extremes of their ranges. The decision to skip breeding enables animals to adjust life history to circumstances, and plasticity in behavior allows implementation of adjustments. Elevational patterns suggest that breeding may be limited physiologically at high elevations (e.g., greater probability of skipped breeding; resources and environmental conditions more variable) in contrast to low elevations (probability of skipping breeding lower; resources and environmental conditions more predictable). We estimated the probabilities of survival and skipped breeding in a high-elevation population of common toads and compared estimates to existing data for common toads at low elevations, and to another toad species inhabiting a similar high elevation environment. Female common toads at high elevations tend to have high probabilities of skipping breeding and survival relative to data for common toads at low elevations, and appear to use a similar strategy of skipping breeding in response to similar environmental constraints as other toads at high elevations. We provide evidence of variability in this aspect of life history for common toads. Understanding variation in life history within widely distributed species is critical. Knowing that certain life history strategies are employed on a continuum informs conservation efforts, especially as impacts of climate change are likely to be different depending on elevation. © 2013 The Society of Population Ecology and Springer Japan (outside the USA).
Identifiersdoi: 10.1007/s10144-013-0381-6
issn: 1438-3896
e-issn: 1438-390X
Appears in Collections:(MNCN) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.