English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/123024
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:


Highly pH-Responsive Pharmacological Chaperones for Mutant Glycosidase Enhancement

AuthorsMena-Barragán, Teresa; Narita, Aya; Matias, Dino; Tiscornia, Gustavo; Nanba, Eiji; Ohno, Kousaku; Suzuki, Yoshiyuki; Higaki, Katsumi; García-Fernández, José Manuel; Ortiz-Mellet, Carmen
pH sensitivity
Protein folding
Issue Date2015
CitationAngewandte Chemie - International Edition, 54)40): 11696-11700 (2015)
AbstractA general approach is reported for the design of small-molecule competitive inhibitors of lysosomal glycosidases programmed to 1) promote correct folding of mutant enzymes at the endoplasmic reticulum, 2) facilitate trafficking, and 3) undergo dissociation and self-inactivation at the lysosome. The strategy is based on the incorporation of an orthoester segment into iminosugar conjugates to switch the nature of the aglycone moiety from hydrophobic to hydrophilic in the pH 7 to pH 5 window, which has a dramatic effect on the enzyme binding affinity. As a proof of concept, new highly pH-responsive glycomimetics targeting human glucocerebrosidase or α-galactosidase with strong potential as pharmacological chaperones for Gaucher or Fabry disease, respectively, were developed
Publisher version (URL)http://dx.doi.org/10.1002/anie.201505147
Appears in Collections:(IIQ) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.