English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/122806
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

An automated image analysis method to measure regularity in biological patterns: a case study in a Drosophila neurodegenerative model

AutorDiez-Hermano, Sergio; Valero, Jorge; Rueda, Cristina; Ganfornina, M. D. ; Sánchez, Diego
Palabras claveEye classifier
ImageJ plugin
Neurodegeneration
Ommatidia
Fecha de publicación2015
EditorBioMed Central
CitaciónMolecular Neurodegeneration 10: 9 (2015)
ResumenThe fruitfly compound eye has been broadly used as a model for neurodegenerative diseases. Classical quantitative techniques to estimate the degeneration level of an eye under certain experimental conditions rely either on time consuming histological techniques to measure retinal thickness, or pseudopupil visualization and manual counting. Alternatively, visual examination of the eye surface appearance gives only a qualitative approximation provided the observer is well-trained. Therefore, there is a need for a simplified and standardized analysis of fruitfly eye degeneration extent for both routine laboratory use and for automated high-throughput analysis. We have designed the freely available ImageJ plugin FLEYE, a novel and user-friendly method for quantitative unbiased evaluation of neurodegeneration levels based on the acquisition of fly eye surface pictures. The incorporation of automated image analysis tools and a classification algorithm sustained on a built-in statistical model allow the user to quickly analyze large sample size data with reliability and robustness. Pharmacological screenings or genetic studies using the Drosophila retina as a model system may benefit from our method, because it can be easily implemented in a fully automated environment. In addition, FLEYE can be trained to optimize the image detection capabilities, resulting in a versatile approach to evaluate the pattern regularity of other biological or non-biological samples and their experimental or pathological disruption.
DescripciónThis is an Open Access article distributed under the terms of the Creative Commons Attribution License.
Versión del editorhttp://dx.doi.org/10.1186/s13024-015-0005-z
URIhttp://hdl.handle.net/10261/122806
DOI10.1186/s13024-015-0005-z
ISSN1750-1326
Aparece en las colecciones: (IBGM) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
automated image analysis.pdf3,88 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.