English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/122746
logo share SHARE   Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Pyrolysis Compound Specific Isotope Analysis (Py-CSIA). Applications in natural and synthetic matrices.

AutorGonzález-Pérez, José Antonio ; Jiménez Morillo, N. T. ; González-Vila, Francisco Javier
Fecha de publicación1-oct-2014
EditorSociedad Española de Cromatografía y Técnicas Afines
Sociedad Española de Química Analítica
CitaciónLibro de Abstracts de las14ª Jornadas de Análisis Instrumental (14 JAI) 1-3 octubre, Barcelona
ResumenNowadays the study of isotopic signature of light elements through isotope ratio mass spectrometry (IRMS) is being extensively used to enlighten relevant scientific questions and important aspects for the geochemistry, environment and the industry i.e. global element cycles, past climatic conditions, paleodiets, trace food sources/webs, polymer signatures /traceability, etc. Thus, isotopic analysis has become a key tool for scientists in many disciplines and the practical applications of the technique are continuously growing. Compound-specific isotope analysis (CSIA) using gas chromatography-combustion/pyrolysis isotope ratio mass spectrometry (GC-EA/TC-IRMS), usually require intermediate preparative procedures prior to chromatographic analysis to isolate analytes from bulk samples i.e. soils, sediments, or other biological or synthetic materials. Non-volatile compounds must be made amenable to GC by derivatization or treated by different methods in order to be amenable to the chromatographic separation. Analytical pyrolysis is a long established technique ideally suited for one-stage combination with GC. The sample is heated up in an inert atmosphere to decompose into smaller units which are carried by a gas to the next instrument for separation and characterization. The pyrolyzer is usually linked to a GC which can further be connected to detectors such as MS or FTIR. In this communication the results obtained by effectively hyphenating analytical pyrolysis (Py-GC) with IRMS of light elements (C, H, N) stable isotopes are described. These include a variety of matrices of increasing complexity such as synthetic polymers, biopolymers from C3 and C4 photosystem plants, recent sediments, fossil materials, etc. First a bulk isotopic characterization of light elements (¿15N, ¿13C, ¿18O and ¿D) was performed for each material using a Flash 2000 HT elemental analyzer coupled to a Delta V Advantage IRMS (Thermo Scientific) (EA/TC-IRMS). Chemical structural information of pyrolysates released by the different matrices was first acquired by conventional analytical pyrolysis (Py-GC/MS). The direct study of specific compounds isotopic signature of light elements (¿13C, ¿15N and ¿D) was done by coupling a pyrolysis unit (double-shot pyrolyzer ¿Frontier Laboratories, model EGA/Py-3030D¿) ¿ to a gas chromatograph fitted with a flame ionization detector (GC/FID) and coupled to the Delta V Advantage IRMS (Thermo Scientific GC-Isolink System) (Py-GC-(FID)-EA\TC-IRMS).
Aparece en las colecciones: (IRNAS) Comunicaciones congresos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Mostrar el registro completo

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.