English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/12230
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Maximum likelihood refinement of electron microscopy data with normalization errors

AutorScheres, Sjors H. W.; Valle, Mikel; Grob, Patricia; Nogales, Eva; Carazo, José M.
Palabras claveSingle particle analysis
Structural heterogeneity
Classification
Expectation maximization
Fecha de publicaciónmay-2009
EditorElsevier
CitaciónJournal of Structural Biology, 166: 2 (2009) 234-240
ResumenCommonly employed data models for maximum likelihood refinement of electron microscopy images behave poorly in the presence of normalization errors. Small variations in background mean or signal brightness are relatively common in cryo-electron microscopy data, and varying signal-to-noise ratios or artifacts in the images interfere with standard normalization procedures. In this paper, a statistical data model that accounts for normalization errors is presented, and a corresponding algorithm for maximum likelihood classification of structurally heterogeneous projection data is derived. The extended data model has general relevance, since similar algorithms may be derived for other maximum likelihood approaches in the field. The potentials of this approach are illustrated for two structurally heterogeneous data sets: 70S E.coli ribosomes and human RNA polymerase II complexes. In both cases, maximum likelihood classification based on the conventional data model failed, whereas the new approach was capable of revealing previously unobserved conformations.
Versión del editorhttp://dx.doi.org/10.1016/j.jsb.2009.02.007
URIhttp://hdl.handle.net/10261/12230
DOI10.1016/j.jsb.2009.02.007
ISSN1047-8477
Aparece en las colecciones: (CNB) Artículos
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.