English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/121802
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
DC FieldValueLanguage
dc.contributor.authorPlaza-Bonilla, Danieles_ES
dc.contributor.authorArrúe Ugarte, José Luises_ES
dc.contributor.authorCantero-Martínez, Carloses_ES
dc.contributor.authorFanlo, Rosarioes_ES
dc.contributor.authorIglesias Picazo, Anaes_ES
dc.contributor.authorÁlvaro-Fuentes, Jorgees_ES
dc.date.issued2015-
dc.identifier.citationPlaza-Bonilla D, Arrúe JL, Cantero-Martínez C, Fanlo R, Iglesias A, Álvaro-Fuentes J. Carbon management in dryland agricultural systems. A review. Agronomy for Sustainable Development 35 (4): 1319-1334 (2015)es_ES
dc.identifier.issn1774-0746-
dc.identifier.urihttp://hdl.handle.net/10261/121802-
dc.description38 Pags.- 3 Figs. The definitive version is available at: http://link.springer.com/journal/13593es_ES
dc.description.abstractDryland areas cover about 41 % of the Earth’s surface and sustain over 2 billion inhabitants. Soil carbon (C) in dryland areas is of crucial importance to maintain soil quality and productivity and a range of ecosystem services. Soil mismanagement has led to a significant loss of carbon in these areas, which in many of them entailed several land degradation processes such as soil erosion, reduction in crop productivity, lower soil water holding capacity, a decline in soil biodiversity, and, ultimately, desertification, hunger and poverty in developing countries. As a consequence, in dryland areas proper management practices and land use policies need to be implemented to increase the amount of C sequestered in the soil. When properly managed, dryland soils have a great potential to sequester carbon if financial incentives for implementation are provided. Dryland soils contain the largest pool of inorganic C. However, contrasting results are found in the literature on the magnitude of inorganic C sequestration under different management regimes. The rise of atmospheric carbon dioxide (CO2) levels will greatly affect dryland soils, since the positive effect of CO2 on crop productivity will be offset by a decrease of precipitation, thus increasing the susceptibility to soil erosion and crop failure. In dryland agriculture, any removal of crop residues implies a loss of soil organic carbon (SOC). Therefore, the adoption of no-tillage practices in field crops and growing cover crops in tree crops have a great potential in dryland areas due to the associated benefits of maintaining the soil surface covered by crop residues. Up to 80 % reduction in soil erosion has been reported when using no-tillage compared with conventional tillage. However, no-tillage must be maintained over the long term to enhance soil macroporosity and offset the emission of nitrous oxide (N2O) associated to the greater amount of water stored in the soil when no-tillage is used. Furthermore, the use of long fallow periods appears to be an inefficient practice for water conservation, since only 10–35 % of the rainfall received is available for the next crop when fallow is included in the rotation. Nevertheless, conservation agriculture practices are unlikely to be adopted in some developing countries where the need of crop residues for soil protection competes with other uses. Crop rotations, cover crops, crop residue retention, and conservation agriculture have a direct positive impact on biodiversity and other ecosystem services such as weed seed predation, abundance and distribution of a broad range of soil organisms, and bird nesting density and success. The objective of sequestering a significant amount of C in dryland soils is attainable and will result in social and environmental benefits.es_ES
dc.description.sponsorshipThis work has been partially supported by the Spanish Ministry of Economy and Competitiveness (grants AGL 2013-49062-C4-1-R and AGL 2013-49062-C4-4-R).es_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.relation.isversionofPostprintes_ES
dc.rightsopenAccessen_EN
dc.subjectBiodiversityes_ES
dc.subjectClimate changees_ES
dc.subjectDryland agroecosystemses_ES
dc.subjectEcosystem serviceses_ES
dc.subjectLivestockes_ES
dc.subjectResearch perspectiveses_ES
dc.subjectSocioeconomic factorses_ES
dc.subjectSoil carbon sequestrationes_ES
dc.subjectSoil wateres_ES
dc.titleCarbon management in dryland agricultural systems. A reviewes_ES
dc.typeartículoes_ES
dc.identifier.doi10.1007/s13593-015-0326-x-
dc.description.peerreviewedPeer reviewedes_ES
dc.relation.publisherversionhttp://dx.doi.org/10.1007/s13593-015-0326-xes_ES
dc.identifier.e-issn1773-0155-
dc.embargo.terms2016-09-02es_ES
dc.contributor.funderMinisterio de Economía y Competitividad (España)es_ES
dc.relation.csices_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100003329es_ES
Appears in Collections:(EEAD) Artículos
Files in This Item:
File Description SizeFormat 
AlvaroJ_AgronSustDevelopm_2015.pdf1,15 MBAdobe PDFThumbnail
View/Open
Show simple item record
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.