Please use this identifier to cite or link to this item:
http://hdl.handle.net/10261/121768
Share/Export:
![]() ![]() |
|
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE | |
Title: | Screening of effective pharmacological treatments for MELAS syndrome using yeasts, fibroblasts and cybrid models of the disease |
Authors: | Garrido-Maraver, Juan; Cordero, Mario D. CSIC ORCID; Domínguez-Moñino, Irene CSIC ORCID; Pereira-Arenas, Sheila; Lechuga-Vieco, Ana V.; Cotán, David CSIC; Mata, Mario de la CSIC ORCID; Oropesa-Ávila, Manuel; Miguel, Manuel de; Bautista Lorite, Juan; Rivas Infante, Eloy; Álvarez-Dolado, Manuel CSIC ORCID CVN; Navas, Plácido CSIC ORCID; Jackson, Sandra; Sánchez-Alcázar, José Antonio CSIC ORCID | Keywords: | Coenzyme Q10 Riboflavin Mitochondrial disease MELAS Mitophagy |
Issue Date: | 19-Oct-2012 | Publisher: | John Wiley & Sons | Citation: | British Journal of Pharmacology 167 (16): 1311-1328 (2012) | Abstract: | [Backgroun and Purpose]: MELAS (mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes) is a mitochondrial disease most usually caused by point mutations in tRNA genes encoded by mitochondrial DNA (mtDNA). Approximately 80% of cases of MELAS syndrome are associated with a m.3243A > G mutation in the MT-TL1 gene, which encodes the mitochondrial tRNALeu (UUR). Currently, no effective treatments are available for this chronic progressive disorder. Treatment strategies in MELAS and other mitochondrial diseases consist of several drugs that diminish the deleterious effects of the abnormal respiratory chain function, reduce the presence of toxic agents or correct deficiencies in essential cofactors. [Experimental Approach]: We evaluated the effectiveness of some common pharmacological agents that have been utilized in the treatment of MELAS, in yeast, fibroblast and cybrid models of the disease. The yeast model harbouring the A14G mutation in the mitochondrial tRNALeu(UUR) gene, which is equivalent to the A3243G mutation in humans, was used in the initial screening. Next, the most effective drugs that were able to rescue the respiratory deficiency in MELAS yeast mutants were tested in fibroblasts and cybrid models of MELAS disease. [Key Results]: According to our results, supplementation with riboflavin or coenzyme Q10 effectively reversed the respiratory defect in MELAS yeast and improved the pathologic alterations in MELAS fibroblast and cybrid cell models. [Conclusions and Implications]: Our results indicate that cell models have great potential for screening and validating the effects of novel drug candidates for MELAS treatment and presumably also for other diseases with mitochondrial impairment. |
Description: | Trabajo presentado como póster al 22nd IUBMB & 37th FEBS Congress, celebrado en Sevilla (España) del 4 al 9 de septiembre de 2012. | Publisher version (URL): | http://dx.doi.org/10.1111/j.1476-5381.2012.02086.x | URI: | http://hdl.handle.net/10261/121768 | DOI: | 10.1111/j.1476-5381.2012.02086.x | ISSN: | 0007-1188 | E-ISSN: | 1476-5381 |
Appears in Collections: | (CABD) Artículos (CABIMER) Artículos |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
accesoRestringido.pdf | 15,38 kB | Adobe PDF | ![]() View/Open |
Review this work
PubMed Central
Citations
14
checked on Aug 18, 2022
SCOPUSTM
Citations
34
checked on Aug 12, 2022
WEB OF SCIENCETM
Citations
28
checked on Aug 12, 2022
Page view(s)
307
checked on Aug 19, 2022
Download(s)
81
checked on Aug 19, 2022
Google ScholarTM
Check
Altmetric
Dimensions
Related articles:
WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.