English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/121612
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:


Decadal acidification in the water masses of the Atlantic Ocean

AuthorsRíos, Aida F. ; Resplandy, Laure; García-Ibáñez, Maribel I. ; Fajar, Noelia ; Velo, A. ; Padín, X. A. ; Wanninkhof, Rik; Steinfeldt, R.; Rosón, Gabriel; Pérez, Fiz F.
KeywordsOcean acidification
Anthropogenic carbon
Water masses
Climate model
Issue Date2015
PublisherNational Academy of Sciences (U.S.)
CitationProceedings of the National Academy of Sciences of the USA 112(32): 9950-9955 (2015)
AbstractGlobal ocean acidification is caused primarily by the ocean’s uptake of CO2 as a consequence of increasing atmospheric CO2 levels. We present observations of the oceanic decrease in pH at the basin scale (50°S–36°N) for the Atlantic Ocean over two decades (1993–2013). Changes in pH associated with the uptake of anthropogenic CO2 (ΔpHCant) and with variations caused by biological activity and ocean circulation (ΔpHNat) are evaluated for different water masses. Output from an Institut Pierre Simon Laplace climate model is used to place the results into a longer-term perspective and to elucidate the mechanisms responsible for pH change. The largest decreases in pH (∆pH) were observed in central, mode, and intermediate waters, with a maximum ΔpH value in South Atlantic Central Waters of −0.042 ± 0.003. The ΔpH trended toward zero in deep and bottom waters. Observations and model results show that pH changes generally are dominated by the anthropogenic component, which accounts for rates between −0.0015 and −0.0020/y in the central waters. The anthropogenic and natural components are of the same order of magnitude and reinforce one another in mode and intermediate waters over the time period. Large negative ΔpHNat values observed in mode and intermediate waters are driven primarily by changes in CO2 content and are consistent with (i) a poleward shift of the formation region during the positive phase of the Southern Annular Mode in the South Atlantic and (ii) an increase in the rate of the water mass formation in the North Atlantic
Description6 páginas, 5 figuras, 1 tabla.-- Proyecto Carbochange.-- Open access
Publisher version (URL)http://dx.doi.org/10.1073/pnas.1504613112
Appears in Collections:(IIM) Artículos
Files in This Item:
File Description SizeFormat 
Decadal_acidification_PNAS_2015.pdf2,02 MBAdobe PDFThumbnail
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.