English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/121363
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Título

Automatic image processing for agriculture through specific ENVI modules (add-on)

AutorGarcía Torres, Luis ; Caballero Novella, Juan José ; Gómez-Candón, David ; López Granados, Francisca
Palabras claveCROPCLASS
AUGEO
SARI
Fecha de publicaciónoct-2011
CitaciónESRI European User Conference (2011)
ResumenPrecision agriculture takes into account the spatial variability of biotic factors (weeds, pathogens) and of abiotic factors (nutrients, water content), and it uses diverse technologies to apply fertilisers, pesticides or other inputs at variable rates, fitted to the needs of each small-defined area (“micro-plot”). The economic and environmental benefits of precision agriculture are widely accepted. Remote sensing could become an important tool in precision agriculture applications only if specific modules are developed to automate image processing. The aim of this presentation is to outline the contribution of our research group in the development of ENVI® add-on for precision agriculture, as follows: 1) CLUAS®, for clustering and assessment orchards units; 2) SARI®, for sectioning and assessment images of annual crops; 3) AUGEO-2.0®, to increase the image georeferencing accuracy; and 4) CROPCLASS®, to isolate and assess individual agriculture plots before precision processing. These modules are free for research groups upon request.
DescripciónTrabajo presentado en la ESRI EUROPEAN USER CONFERENCE, celebrada en Madrid del 26 al 28 de octubre de 2011
URIhttp://hdl.handle.net/10261/121363
ReferenciasGarcía Torres, Luis; Gómez-Candón, David; Caballero Novella, Juan José; Peña Barragán, José Manuel; López Granados, Francisca; Jurado-Expósito, Montserrat. CROPCLASS-2.0 software for census parcel cropping systems classification from multitemporal remote imagery. http://hdl.handle.net/10261/121360
Caballero Novella, Juan José; García Torres, Luis; Gómez-Candón, David. Procedimiento CROPCLASS® de clasificación de cultivos en imágenes remotas a nivel parcela para su uso en el censo agrícola. http://hdl.handle.net/10261/121367
García Torres, Luis, Caballero Novella, Juan José, Gómez-Candón, David, Peña, José Manuel. Census Parcels Cropping System Classification from Multitemporal Remote Imagery: A Proposed Universal Methodology. 10.1371/journal.pone.0117551. http://hdl.handle.net/10261/121368
Aparece en las colecciones: (IAS) Comunicaciones congresos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
ESRI_Conference_overview_software_GarciaTorres.pdf1,3 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.