English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/121265
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

Muon spin rotation and neutron scattering study of the noncentrosymmetric tetragonal compound CeAuAl3

AuthorsAdroja, D. T.; Fuente, Carlos de la ; Fraile, A.; Burzurí, Enrique; Luis, Fernando; Arnaudas, J. I.; Moral, A. del
Issue DateApr-2015
PublisherAmerican Physical Society
CitationPhysical Review B 91(3): 134425 (2015)
AbstractWe have investigated the noncentrosymmetric tetragonal heavy fermion compound CeAuAl3 using muon spin rotation (μSR), neutron diffraction (ND), and inelastic neutron scattering (INS) measurements. We have also revisited the magnetic, transport, and thermal properties. The magnetic susceptibility reveals an antiferromagnetic transition at 1.1 K with, possibly, another magnetic transition near 0.18 K. The heat capacity shows a sharp λ-type anomaly at 1.1 K in zero field, which broadens and moves to a higher temperature in an applied magnetic field. Our zero-field μSR and ND measurements confirm the existence of a long-range magnetic ground state below 1.2 K. Further, the ND study reveals an incommensurate magnetic order with a magnetic propagation vector k=(0,0,0.52(1)) and a spiral structure of Ce moments coupled ferromagnetically within the ab plane. Our INS study reveals the presence of two well-defined crystal electric field (CEF) excitations at 5.1 and 24.6 meV in the paramagnetic phase of CeAuAl3 that can be explained on the basis of the CEF theory and the Kramer's theorem for a Ce ion having a 4f1 electronic state. Furthermore, low energy quasielastic excitations show a Gaussian line shape below 30 K compared to a Lorentzian line shape above 30 K, indicating a slowdown of spin fluctuations below 30 K. We have estimated a Kondo temperature of TK=3.5K from the quasielastic linewidth, which is in good agreement with that estimated from the heat capacity. This study also indicates the absence of any CEF-phonon coupling unlike that observed in isostructural CeCuAl3 The CEF parameters, energy level scheme, and their wave functions obtained from the analysis of INS data explain satisfactorily the single crystal susceptibility in the presence of two-ion anisotropic exchange interaction in CeAuAl3.
DescriptionUnder the terms of the Creative Commons Attribution License 3.0 (CC-BY).-- et al.
Publisher version (URL)http://dx.doi.org/10.1103/PhysRevB.91.134425
URIhttp://hdl.handle.net/10261/121265
DOI10.1103/PhysRevB.91.134425
ISSN1098-0121
E-ISSN1550-235X
Appears in Collections:(ICMA) Artículos
Files in This Item:
File Description SizeFormat 
Muon spin rotation.pdf2,07 MBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.