Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/121046
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Basidiomycete DyPs: Genomic diversity, structural-functional aspects, reaction mechanism and environmental significance

AutorLinde, Dolores CSIC ORCID ; Ruiz-Dueñas, F. J. CSIC ORCID ; Fernández-Fueyo, Elena CSIC ORCID; Guallar, Victor; Hammel, Kenneth E.; Pogni, Rebecca; Martínez, Ángel T. CSIC ORCID
Palabras claveDye-decolorizing peroxidases
CDE superfamily
Molecular structure
Reaction mechanism
Catalytic tryptophan
Long-range electron transfer;
Substituted anthraquinone breakdown
Ligninolysis
Fecha de publicación28-ene-2015
EditorElsevier
CitaciónArch Biochem Biophys 574: 66-74 (2015)
ResumenThe first enzyme with dye-decolorizing peroxidase (DyP) activity was described in 1999 from an arthroconidial culture of the fungus Bjerkandera adusta. However, the first DyP sequence had been deposited three years before, as a peroxidase gene from a culture of an unidentified fungus of the family Polyporaceae (probably Irpex lacteus). Since the first description, fewer than ten basidiomycete DyPs have been purified and characterized, but a large number of sequences are available from genomes. DyPs share a general fold and heme location with chlorite dismutases and other DyP-type related proteins (such as Escherichia coli EfeB), forming the CDE superfamily. Taking into account the lack of an evolutionary relationship with the catalase-peroxidase superfamily, the observed heme pocket similarities must be considered as a convergent type of evolution to provide similar reactivity to the enzyme cofactor. Studies on the Auricularia auricula-judae DyP showed that high-turnover oxidation of anthraquinone type and other DyP substrates occurs via long-range electron transfer from an exposed tryptophan (Trp377, conserved in most basidiomycete DyPs), whose catalytic radical was identified in the H2O2-activated enzyme. The existence of accessory oxidation sites in DyP is suggested by the residual activity observed after site-directed mutagenesis of the above tryptophan. DyP degradation of substituted anthraquinone dyes (such as Reactive Blue 5) most probably proceeds via typical one-electron peroxidase oxidations and product breakdown without a DyP-catalyzed hydrolase reaction. Although various DyPs are able to break down phenolic lignin model dimers, and basidiomycete DyPs also present marginal activity on nonphenolic dimers, a significant contribution to lignin degradation is unlikely because of the low activity on high redox-potential substrates.
Descripción16 p.-6 fig.
Versión del editorhttp://dx.doi.org/ 10.1016/j.abb.2015.01.018
URIhttp://hdl.handle.net/10261/121046
DOI10.1016/j.abb.2015.01.018
ISSN0003-9861
E-ISSN1096-0384
Aparece en las colecciones: (CIB) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
2015-Linde-ABB-revised.pdfPostprint2,23 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

69
checked on 10-mar-2024

WEB OF SCIENCETM
Citations

64
checked on 22-feb-2024

Page view(s)

411
checked on 19-abr-2024

Download(s)

308
checked on 19-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


Este item está licenciado bajo una Licencia Creative Commons Creative Commons