English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/11989
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Título

Inherent noise can facilitate coherence in collective swarm motion

AutorYates, Christian A.; Erban, Radek; Escudero, Carlos; Couzin, Iain D.; Buhl, Jérôme; Kevrekidis, Ioannis G.; Mainia, Philip K.; Sumpter, David J. T.
Palabras claveCollective behavior
Locusts
Density-dependent switching
Coarse-graining
Swarming
Fecha de publicación30-mar-2009
EditorNational Academy of Sciences (U.S.)
CitaciónProc. Natl. Acad. Sci. USA 106(14): 5464-5469 (2009)
ResumenAmong the most striking aspects of the movement of many animal groups are their sudden coherent changes in direction. Recent observations of locusts and starlings have shown that this directional switching is an intrinsic property of their motion. Similar direction switches are seen in self-propelled particle and other models of group motion. Comprehending the factors that determine such switches is key to understanding the movement of these groups. Here, we adopt a coarse-grained approach to the study of directional switching in a self-propelled particle model assuming an underlying one-dimensional Fokker–Planck equation for the mean velocity of the particles. We continue with this assumption in analyzing experimental data on locusts and use a similar systematic Fokker–Planck equation coefficient estimation approach to extract the relevant information for the assumed Fokker–Planck equation underlying that experimental data. In the experiment itself the motion of groups of 5 to 100 locust nymphs was investigated in a homogeneous laboratory environment, helping us to establish the intrinsic dynamics of locust marching bands. We determine the mean time between direction switches as a function of group density for the experimental data and the self-propelled particle model. This systematic approach allows us to identify key differences between the experimental data and the model, revealing that individual locusts appear to increase the randomness of their movements in response to a loss of alignment by the group. We give a quantitative description of how locusts use noise to maintain swarm alignment. We discuss further how properties of individual animal behavior, inferred by using the Fokker–Planck equation coefficient estimation approach, can be implemented in the self-propelled particle model to replicate qualitatively the group level dynamics seen in the experimental data.
Descripción6 pages, 4 figures.-- PMID: 19336580 [PubMed].-- PMCID: PMC2667078.-- Printed version published Apr 7, 2009.
Supporting information (Appendix, 6 pages, 4 figures) available at: http://www.pnas.org/content/106/14/5464/suppl/DCSupplemental
Versión del editorhttp://dx.doi.org/10.1073/pnas.0811195106
URIhttp://hdl.handle.net/10261/11989
DOI10.1073/pnas.0811195106
ISSN0027-8424
Aparece en las colecciones: (ICMAT) Artículos
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.