English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/117959
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Título

Analysis of the modified optical properties and band structure of GaAs 1-xSb x-capped InAs/GaAs quantum dots

AutorUlloa, J. M.; Llorens Montolio, José Manuel ; Moral, M. del; Bozkurt, M.; Koenraad, P. M.; Hierro, Adrián
Fecha de publicación2012
EditorAmerican Institute of Physics
CitaciónJournal of Applied Physics 112(7): 074311 (2012)
ResumenThe origin of the modified optical properties of InAs/GaAs quantum dots (QD) capped with a thin GaAs 1-xSb x layer is analyzed in terms of the band structure. To do so, the size, shape, and composition of the QDs and capping layer are determined through cross-sectional scanning tunnelling microscopy and used as input parameters in an 8 × 8 k·p model. As the Sb content is increased, there are two competing effects determining carrier confinement and the oscillator strength: the increased QD height and reduced strain on one side and the reduced QD-capping layer valence band offset on the other. Nevertheless, the observed evolution of the photoluminescence (PL) intensity with Sb cannot be explained in terms of the oscillator strength between ground states, which decreases dramatically for Sb > 16%, where the band alignment becomes type II with the hole wavefunction localized outside the QD in the capping layer. Contrary to this behaviour, the PL intensity in the type II QDs is similar (at 15 K) or even larger (at room temperature) than in the type I Sb-free reference QDs. This indicates that the PL efficiency is dominated by carrier dynamics, which is altered by the presence of the GaAsSb capping layer. In particular, the presence of Sb leads to an enhanced PL thermal stability. From the comparison between the activation energies for thermal quenching of the PL and the modelled band structure, the main carrier escape mechanisms are suggested. In standard GaAs-capped QDs, escape of both electrons and holes to the GaAs barrier is the main PL quenching mechanism. For small-moderate Sb (16) for which the type I band alignment is kept, electrons escape to the GaAs barrier and holes escape to the GaAsSb capping layer, where redistribution and retraping processes can take place. For Sb contents above 16% (type-II region), holes remain in the GaAsSb layer and the escape of electrons from the QD to the GaAs barrier is most likely the dominant PL quenching mechanism. This means that electrons and holes behave dynamically as uncorrelated pairs in both the type-I and type-II structures. © 2012 American Institute of Physics.
Versión del editorhttp://dx.doi.org/10.1063/1.4755794
URIhttp://hdl.handle.net/10261/117959
DOI10.1063/1.4755794
Identificadoresdoi: 10.1063/1.4755794
issn: 0021-8979
e-issn: 1089-7550
Aparece en las colecciones: (IMN-CNM) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
analysis_modified_optical_Ulloa.pdf2,03 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.