English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/11721
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Campo DC Valor Lengua/Idioma
dc.contributor.authorZorrilla, Silvia-
dc.contributor.authorRivas, Germán-
dc.contributor.authorAcuña, A. Ulises-
dc.contributor.authorLillo, M. Pilar-
dc.date.accessioned2009-03-18T11:56:56Z-
dc.date.available2009-03-18T11:56:56Z-
dc.date.issued2004-
dc.identifier.citationProtein Science 13: 1-10 (2004)en_US
dc.identifier.issn0961-8368-
dc.identifier.urihttp://hdl.handle.net/10261/11721-
dc.description.abstractThe self-association equilibrium of a tracer protein, apomyoglobin (apoMb), in highly concentrated crowded solutions of ribonuclease A (RNase A) and human serum albumin (HSA), has been studied as a model system of protein interactions that occur in crowded macromolecular environments. The rotational diffusion of the tracer protein labeled with two different fluorescent dyes, 8-anilinonaphthalene-1-sulfonate and fluorescein isothiocyanate, was successfully recorded as a function of the two crowder concentrations in the 50-200 mg/mL range, using picosecond-resolved fluorescence anisotropy methods. It was found that apoMb molecules self-associate at high RNase A concentration to yield a flexible dimer. The apparent dimerization constant, which increases with RNase A concentration, could also be estimated from the fractional contribution of monomeric and dimeric species to the total fluorescence anisotropy of the samples. In contrast, an equivalent mass concentration of HSA does not result in tracer dimerization. This different effect of RNase A and HSA is much larger than that predicted from simple models based only on the free volume available to apoMb, indicating that additional, nonspecific interactions between tracer and crowder should come into play. The time-resolved fluorescence polarization methods described here are expected to be of general applicability to the detection and quantification of crowding effects in a variety of macromolecules of biological relevance.en_US
dc.description.sponsorshipThis work was supported by grants BQU/2000-1500, BIO99-0859-C03, BQU/2003-4430, and SAF/2003-04266 from the Spanish Dirección General de Enseñanza Superior e Investigación (DGESI), and grant 07B/0042/1999 from Comunidad de Madrid. S.Z. was a predoctoral fellow of the Comunidad de Madrid (CAM).en_US
dc.format.extent6080 bytes-
dc.format.mimetypeimage/gif-
dc.language.isoengen_US
dc.publisherJohn Wiley & Sonsen_US
dc.rightsclosedAccessen_US
dc.subjectTime-resolved fluorescence anisotropyen_US
dc.subjectMacromolecular crowdingen_US
dc.subjectSelf-associationen_US
dc.subjectSegmental flexibilityen_US
dc.subjectApomyoglobinen_US
dc.subjectRibonuclease Aen_US
dc.subjectHuman serum albuminen_US
dc.titleProtein self-association in crowded protein solutions: a time-resolved fluorescence polarization studyen_US
dc.typeArtículoen_US
dc.identifier.doi10.1110/ps.04809404-
dc.description.peerreviewedPeer revieweden_US
dc.relation.publisherversionhttp://dx.doi.org/10.1110/ps.04809404en_US
dc.identifier.e-issn1469-896X-
Aparece en las colecciones: (IQFR) Artículos
(CIB) Artículos
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Show simple item record
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.