English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/117206
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Scale-invariance underlying the logistic equation and its social applications

AutorHernando de Castro, Alberto; Plastino, A.
Palabras claveLogistic equation
Social systems
Fecha de publicación3-ene-2013
CitaciónPhysics Letters A 377(3-4): 176-180 (2013)
ResumenOn the basis of dynamical principles we i) advance a derivation of the Logistic Equation (LE), widely employed (among multiple applications) in the simulation of population growth, and ii) demonstrate that scale-invariance and a mean-value constraint are sufficient and necessary conditions for obtaining it. We also generalize the LE to multi-component systems and show that the above dynamical mechanisms underlie a large number of scale-free processes. Examples are presented regarding city-populations, diffusion in complex networks, and popularity of technological products, all of them obeying the multi-component logistic equation in an either stochastic or deterministic way. © 2012 Elsevier B.V. All rights reserved.
Versión del editorhttp://dx.doi.org/10.1016/j.physleta.2012.10.054
Identificadoresdoi: 10.1016/j.physleta.2012.10.054
issn: 0375-9601
Aparece en las colecciones: (IFISC) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Mostrar el registro completo

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.