English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/117060
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Stabilization of periodic orbits near a subcritical Hopf bifurcation in delay-coupled networks

AutorChoe, Chol-Ung; Jang, Hyok; Flunkert, Valentín ; Dahms, Thomas; Hövel, Philipp; Schöll, Eckehard
Palabras claveNetworks
Hopf bifurcation
Fecha de publicación2013
EditorTaylor & Francis
CitaciónDynamical Systems 28(1): 15-33 (2013)
ResumenWe study networks of delay-coupled oscillators with the aim to extend time-delayed feedback control to networks. We show that unstable periodic orbits of a network can be stabilized by a noninvasive, delayed coupling. We state criteria for stabilizing the orbits by delay-coupling in networks and apply these to the case where the local dynamics is close to a subcritical Hopf bifurcation, which is representative of systems with torsion-free unstable periodic orbits. Using the multiple scale method and the master stability function approach, the network system is reduced to the normal form, and the characteristic equations for Floquet exponents are derived in an analytical form, which reveals the coupling parameters for successful stabilization. Finally, we illustrate the results by numerical simulations of the Lorenz system close to a subcritical Hopf bifurcation. The unstable periodic orbits in this system have no torsion, and hence cannot be stabilized by the conventional time delayed-feedback technique.
Versión del editorhttp://dx.doi.org/10.1080/14689367.2012.730500
Identificadoresdoi: 10.1080/14689367.2012.730500
issn: 1468-9367
e-issn: 1468-9375
Aparece en las colecciones: (IFISC) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Mostrar el registro completo

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.