English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/117021
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

MicroRNA deep-sequencing reveals master regulators of follicular and papillary thyroid tumors

AutorMancikova, Veronika; Matías-Guiu, Xavier; Riesco-Eizaguirre, Garcilaso; Santisteban, Pilar ; Robledo, Mercedes
Fecha de publicación2015
EditorNature Publishing Group
CitaciónModern Pathology 28(6): 748-757 (2015)
ResumenMicroRNA deregulation could be a crucial event in thyroid carcinogenesis. However, current knowledge is based on studies that have used inherently biased methods. Thus, we aimed to define in an unbiased way a list of deregulated microRNAs in well-differentiated thyroid cancer in order to identify diagnostic and prognostic markers. We performed a microRNA deep-sequencing study using the largest well-differentiated thyroid tumor collection reported to date, comprising 127 molecularly characterized tumors with follicular or papillary patterns of growth and available clinical follow-up data, and 17 normal tissue samples. Furthermore, we integrated microRNA and gene expression data for the same tumors to propose targets for the novel molecules identified. Two main microRNA expression profiles were identified: one common for follicular-pattern tumors, and a second for papillary tumors. Follicular tumors showed a notable overexpression of several members of miR-515 family, and downregulation of the novel microRNA miR-1247. Among papillary tumors, top upregulated microRNAs were miR-146b and the miR-221∼222 cluster, while miR-1179 was downregulated. BRAF-positive samples displayed extreme downregulation of miR-7 and -204. The identification of the predicted targets for the novel molecules gave insights into the proliferative potential of the transformed follicular cell. Finally, by integrating clinical follow-up information with microRNA expression, we propose a prediction model for disease relapse based on expression of two miRNAs (miR-192 and let-7a) and several other clinicopathological features. This comprehensive study complements the existing knowledge about deregulated microRNAs in the development of well-differentiated thyroid cancer and identifies novel markers associated with recurrence-free survival.
Descripciónet al.
URIhttp://hdl.handle.net/10261/117021
DOI10.1038/modpathol.2015.44
Identificadoresdoi: 10.1038/modpathol.2015.44
issn: 0893-3952
e-issn: 1530-0285
Aparece en las colecciones: (IIBM) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.