English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/116774
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

DC FieldValueLanguage
dc.contributor.authorZeeb, Steffen-
dc.contributor.authorDahms, Thomas-
dc.contributor.authorFlunkert, Valentín-
dc.contributor.authorSchöll, Eckehard-
dc.contributor.authorKanter, Ido-
dc.contributor.authorKinzel, Wolfgang-
dc.date.accessioned2015-06-18T08:57:06Z-
dc.date.available2015-06-18T08:57:06Z-
dc.date.issued2013-04-10-
dc.identifierdoi: 10.1103/PhysRevE.87.042910-
dc.identifierissn: 1539-3755-
dc.identifiere-issn: 1550-2376-
dc.identifier.citationPhysical Review - Section E - Statistical Nonlinear and Soft Matter Physics 87(4): 042910 (2013)-
dc.identifier.urihttp://hdl.handle.net/10261/116774-
dc.description.abstractThe attractor dimension at the transition to complete synchronization in a network of chaotic units with time-delayed couplings is investigated. In particular, we determine the Kaplan-Yorke dimension from the spectrum of Lyapunov exponents for iterated maps and for two coupled semiconductor lasers. We argue that the Kaplan-Yorke dimension must be discontinuous at the transition and compare it to the correlation dimension. For a system of Bernoulli maps, we indeed find a jump in the correlation dimension. The magnitude of the discontinuity in the Kaplan-Yorke dimension is calculated for networks of Bernoulli units as a function of the network size. Furthermore, the scaling of the Kaplan-Yorke dimension as well as of the Kolmogorov entropy with system size and time delay is investigated. © 2013 American Physical Society.-
dc.publisherAmerican Physical Society-
dc.relation.isversionofPublisher's version-
dc.rightsopenAccess-
dc.titleDiscontinuous attractor dimension at the synchronization transition of time-delayed chaotic systems-
dc.typeartículo-
dc.identifier.doi10.1103/PhysRevE.87.042910-
dc.relation.publisherversionhttp://dx.doi.org/10.1103/PhysRevE.87.042910-
dc.date.updated2015-06-18T08:57:06Z-
dc.description.versionPeer Reviewed-
dc.language.rfc3066eng-
dc.rights.licensehttp://creativecommons.org/licenses/by/3.0/-
dc.relation.csic-
Appears in Collections:(IFISC) Artículos
Files in This Item:
File Description SizeFormat 
discontinuous_attractor_dimension_Zeeb.pdf1,1 MBAdobe PDFThumbnail
View/Open
Show simple item record
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.