English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/116694
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Título

Snowpack variability across various spatio-temporal resolutions

AutorLópez-Moreno, Juan I. ; Revuelto, Jesús ; Fassnacht, S. R.; Azorín-Molina, César ; Vicente Serrano, Sergio M. ; Morán-Tejeda, Enrique ; Sexstone, G. A.
Palabras clavesub-grid resolution
terrestrial laser scanner
Pyrenees
snow variability
Fecha de publicación2015
EditorWiley-Blackwell
CitaciónHydrological Processes 29(6): 1213-1224 (2015)
ResumenHigh-resolution snow depth (SD) maps (1×1m) obtained from terrestrial laser scanner measurements in a small catchment (0.55km2) in the Pyrenees were used to assess small-scale variability of the snowpack at the catchment and sub-grid scales. The coefficients of variation are compared for various plot resolutions (5×5, 25×25, 49×49, and 99×99m) and eight different days in two snow seasons (2011-2012 and 2012-2013). We also studied the relation between snow variability at the small scale and SD, topographic variables, small-scale variability in topographic variables. The results showed that there was marked variability in SD, and it increased with increasing scales. Days of seasonal maximum snow accumulation showed the least small-scale variability, but this increased sharply with the onset of melting. The coefficient of variation (CV) in snowpack depth showed statistically significant consistency amongst the various spatial resolutions studied, although it declined progressively with increasing difference between the grid sizes being compared. SD best explained the spatial distribution of sub-grid variability. Topographic variables including slope, wind sheltering, sub-grid variability in elevation, and potential incoming solar radiation were also significantly correlated with the CV of the snowpack, with the greatest correlation occurring at the 99×99m resolution. At this resolution, stepwise multiple regression models explained more than 70% of the variance, whereas at the 25×25m resolution they explained slightly more than 50%. The results highlight the importance of considering small-scale variability of the SD for comprehensively representing the distribution of snowpack from available punctual information, and the potential for using SD and other predictors to design optimized surveys for acquiring distributed SD data. © 2014 John Wiley and Sons, Ltd.
Versión del editorhttp://dx.doi.org/10.1002/hyp.10245
URIhttp://hdl.handle.net/10261/116694
DOI10.1002/hyp.10245
Identificadoresdoi: 10.1002/hyp.10245
issn: 1099-1085
Aparece en las colecciones: (IPE) Artículos
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.