English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/116623
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:

Title

Mitochondrial free [Ca2+] dynamics measured with a novel low-Ca2+ affinity aequorin probe

AuthorsFuente, Sergio de la; Fonteriz, Rosalba I. CSIC ORCID; Cruz, Pedro J. de la; Montero, Mayte CSIC ORCID CVN
Issue Date2012
PublisherBiochemical Society
CitationBiochemical Journal 445(3): 371-376 (2012)
AbstractMitochondria have a very large capacity to accumulate Ca(2+) during cell stimulation driven by the mitochondrial membrane potential. Under these conditions, [Ca(2+)](M) (mitochondrial [Ca(2+)]) may well reach millimolar levels in a few seconds. Measuring the dynamics of [Ca(2+)](M) during prolonged stimulation has been previously precluded by the high Ca(2+) affinity of the probes available. We have now developed a mitochondrially targeted double-mutated form of the photoprotein aequorin which is able to measure [Ca(2+)] in the millimolar range for long periods of time without problems derived from aequorin consumption. We show in the present study that addition of Ca(2+) to permeabilized HeLa cells triggers an increase in [Ca(2+)](M) up to an steady state of approximately 2-3 mM in the absence of phosphate and 0.5-1 mM in the presence of phosphate, suggesting buffering or precipitation of calcium phosphate when the free [Ca(2+)] reaches 0.5-1 mM. Mitochondrial pH acidification partially re-dissolved these complexes. These millimolar [Ca(2+)](M) levels were stable for long periods of time provided the mitochondrial membrane potential was not collapsed. Silencing of the mitochondrial Ca(2+) uniporter largely reduced the rate of [Ca(2+)](M) increase, but the final steady-state [Ca(2+)](M) reached was similar. In intact cells, the new probe allows monitoring of agonist-induced increases of [Ca(2+)](M) without problems derived from aequorin consumption.
URIhttp://hdl.handle.net/10261/116623
DOIhttp://dx.doi.org/10.1042/BJ20120423
Identifiersdoi: 10.1042/BJ20120423
issn: 0264-6021
e-issn: 1470-8728
Appears in Collections:(IBGM) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.