English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/115822
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Citado 3 veces en Web of Knowledge®  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título

Topological complexity and predictability in the dynamics of a tumor growth model with Shilnikov's chaos

Autor Duarte, Jorge; Januário, Cristina; Rodrigues, Carla; Sardanyés, Josep
Palabras clave Chaos
Tumor cell dynamics
Complex systems
Topological entropy
Predictability
Cancer
Fecha de publicación 2013
EditorWorld Scientific Publishing
Citación International Journal of Bifurcation and Chaos 23(7): 1350124 (2013)
ResumenDynamical systems modeling tumor growth have been investigated to determine the dynamics between tumor and healthy cells. Recent theoretical investigations indicate that these interactions may lead to different dynamical outcomes, in particular to homoclinic chaos. In the present study, we analyze both topological and dynamical properties of a recently characterized chaotic attractor governing the dynamics of tumor cells interacting with healthy tissue cells and effector cells of the immune system. By using the theory of symbolic dynamics, we first characterize the topological entropy and the parameter space ordering of kneading sequences from one-dimensional iterated maps identified in the dynamics, focusing on the effects of inactivation interactions between both effector and tumor cells. The previous analyses are complemented with the computation of the spectrum of Lyapunov exponents, the fractal dimension and the predictability of the chaotic attractors. Our results show that the inactivation rate of effector cells by the tumor cells has an important effect on the dynamics of the system. The increase of effector cells inactivation involves an inverse Feigenbaum (i.e. period-halving bifurcation) scenario, which results in the stabilization of the dynamics and in an increase of dynamics predictability. Our analyses also reveal that, at low inactivation rates of effector cells, tumor cells undergo strong, chaotic fluctuations, with the dynamics being highly unpredictable. Our findings are discussed in the context of tumor cells potential viability. © World Scientific Publishing Company.
Versión del editorhttp://dx.doi.org/10.1142/S0218127413501241
URI http://hdl.handle.net/10261/115822
DOI10.1142/S0218127413501241
Identificadoresdoi: 10.1142/S0218127413501241
issn: 0218-1274
e-issn: 1793-6551
Aparece en las colecciones: (IBE) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 



NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.