English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/115785
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:


Cooperative hydrogen bonding in glyco-oligoamides: DNA minor groove binders in aqueous media

AuthorsBlázquez-Sánchez, M. Teresa ; Marcelo, Filipa ; Fernández-Alonso, M. Carmen ; Poveda, Ana; Jiménez-Barbero, Jesús ; Vicent, Cristina
Hydrogen bonds
Pi interactions
Issue Date2014
PublisherJohn Wiley & Sons
CitationChemistry - A European Journal 20: 17640-17652 (2014)
AbstractA strategy to create cooperative hydrogen-bonding centers by using strong and directional intramolecular hydrogen-bonding motifs that can survive in aqueous media is presented. In particular, glyco-oligoamides, a family of DNA minor groove binders, with cooperative and non-cooperative hydrogen-bonding donor centers in the carbohydrate residues have been designed, synthesized, and studied by means of NMR spectroscopy and molecular modeling methods. Indeed, two different sugar moieties, namely, β-D-Man-Py-γ-Py-Ind (1; Ind = indole, Man = mannose, Py= pyrrole) and β-D-Tal-Py-γ-Py-Ind (2; Tal = talose), were chosen according to our design. These sugar molecules should present oneor two-directional intramolecular hydrogen bonds. The challenge has been to study the conformation of the glyco-oligoamides at low temperature in physiological media by detecting the exchangeable protons (amide NH and OH resonances) by means of NMR spectroscopic analysis. In addition, two more glyco-oligoamides with non-cooperative hydrogen-bonding centers, that is, β-D-Glc-Py-γ-Py-Ind (3; Glc = glucose), β-D-Gal-Py-γ-Py-Ind (4; Gal = galac-tose), and the model compounds β-D-Man-Py-NHAc (5) and β-D-Tal-Py-NHAc (6) were synthesized and studied for comparison. We have demonstrated the existence of directional intramolecular hydrogen bonds in 1 and 2 in aqueous media. The unexpected differences in terms of stabilization of the intramolecular hydrogen bonds in 1 and 2 relative to 5 and 6 promoted us to evaluate the influence of CH-π interactions on the establishment of intramolecular hydrogen bonds by using computational methods. Initial binding studies of 1 and 2 with calf-thymus DNA and poly(dA-dT)2 by NMR spectroscopic analysis and molecular dynamics simulations were also carried out. Both new sugar-oligoamides are bound in the minor groove of DNA, thus keeping a stable hairpin structure, as in the free state, in which both intramolecular hydrogen-bonding and CH-π interactions are present.
Identifiersdoi: 10.1002/chem.201403911
issn: 0947-6539
e-issn: 1521-3765
Appears in Collections:(IQOG) Artículos
(CIB) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.