English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/115610
logo share SHARE   Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

A study of aminoacid stability in samples of interstellar A study of aminoacid stability in samples of interstellar carbonaceous dust and ice analogues and ice analogues

AutorMaté, Belén ; Herrero, Víctor J. ; Jiménez-Redondo, Miguel ; Tanarro, Isabel ; Rodríguez-Lazcano, Y.; Gálvez, Óscar ; Escribano, Rafael
Fecha de publicación7-abr-2014
EditorRoyal Society of Chemistry (Great Britain)
CitaciónFaraday Discussion 168: Astrochemistry of Dust, Ice and Gas (2014)
ResumenThe effect of UV photon (120-200 nm) and electron (2 keV) irradiation of analogues of interstellar carbonaceous dust and of glycine were investigated by means of IR spectroscopy. Films of hydrogenated amorphous carbon (HAC), taken as dust analogues, were found to be stable under UV photon and electron bombardment. High fluences of photons and electrons, of the order of 10(19) cm(-2), were needed for a film depletion of a few percent. UV photons were energetically more effective than electrons for depletion and led to a certain dehydrogenation of the HAC samples, whereas electrons led seemingly to a gradual erosion with no appreciable changes in the hydrocarbon structure. The rates of change observed may be relevant over the lifetime of a diffuse cloud, but cannot account for the rapid changes in hydrocarbon IR bands during the evolution of some proto-planetary nebulae. Glycine samples under the same photon and electron fluxes decay at a much faster rate, but tend usually to an equilibrium value different from zero, especially at low temperatures. Reversible reactions re-forming glycine, or the build-up of less transparent products, could explain this behavior. CO2 and methylamine were identified as UV photoproducts. Electron irradiation led to a gradual disappearance of the glycine layers, also with formation of CO2. No other reaction products were clearly identified. The thicker glycine layers (a few hundred nm) were not wholly depleted, but a film of the order of the electron penetration depth (80 nm), was totally destroyed with an electron fluence of -1 x 10(18) cm(-2). A 60 nm ice layer on top of glycine provided only partial shielding from the 2 keV electrons. From an energetic point of view, 2 keV electrons are less efficient than UV photons and, according to literature data, much less efficient than MeV protons for the destruction of glycine. The use of keV electrons to simulate effects of cosmic rays on analogues of interstellar grains should be taken with care, due to the low penetration depths of electrons in many samples of interest.
DescripciónLeiden, The Netherlands, 7 - 9 April 2014
Aparece en las colecciones: (CFMAC-IEM) Comunicaciones congresos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Mostrar el registro completo

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.