English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/11555
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Friction term discretization and limitation to preserve stability and conservation in the 1D shallow-water model: Application to unsteady irrigation and river flow

AutorBurguete Tolosa, Javier ; García-Navarro, Pilar; Murillo, J.
Palabras claveshallow water
source term
flow resistance
numerical models
river flow
numerical stability
Fecha de publicaciónoct-2008
EditorJohn Wiley & Sons
CitaciónInternational Journal for Numerical Methods in Fluids 58 (4): 403-425 (2008)
ResumenFriction is one of the relevant forces included in the momentum equation of the 1D shallow-water model. This work shows that a pointwise discretization of the friction term unbalances this term with the rest of the terms in the equation in steady state. On the other hand, an upwind discretization of the friction term ensures the correct discrete balance. Furthermore, a conservative technique based on the limitation of the friction value is proposed in order to avoid unbounded values of the friction term in unsteady cases of advancing front over dry and rough surfaces. This limitation improves the quality of unsteady solutions in wet/dry fronts and guarantees the numerical stability in cases with dominant friction terms. The proposed discretization is validated in some test cases with analytical solution or with measured data and used in some practical cases.
DescripciónThe original version is available at: http://www3.interscience.wiley.com/journal/2861/home
Versión del editorhttp://www3.interscience.wiley.com/cgi-bin/fulltext/117868894/PDFSTART
Aparece en las colecciones: (EEAD) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
BurgueteJ_IntJNumMethFluids_2008.pdf1,66 MBAdobe PDFVista previa
Mostrar el registro completo

Artículos relacionados:

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.