English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/115543
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:

Title

Antimicrobial resistance determinants among anaerobic bacteria isolated from footrot

AuthorsLorenzo, María; García, Nuria ; Ayala, Juan Alfonso ; Vadillo, Santiago; Piriz, Santiago; Quesada, Alberto
KeywordsAntimicrobial resistance
Footrot
Anaerobic bacteria
Issue Date2012
PublisherElsevier
CitationVeterinary Microbiology 157: 112-118 (2012)
AbstractAntibiotic resistance has been evaluated among 36 Gram negative and anaerobic bacilli (10 Bacteroides, 11 Prevotella, 7 Porphyromonas and 8 Fusobacterium strains) isolated from clinical cases of caprine and ovine footrot (necrotic pododermatitis). The initial analysis on this bacterial consortium evaluates the relationships existing among antimicrobial resistance determinants, phenotype expression and mobilization potential. The Bacteroides strains were generally resistant to penicillins, first-generation cephalosporins, tetracycline and erythromycin, and expressed low level of β-lactamase activity. The main determinants found among the Bacteroides strains were cepA and tetQ genes, conferring resistance to β-lactams and tetracycline, respectively. A general susceptibility to β-lactams was shown for most Prevotella, Porphyromonas and Fusobacterium strains, where none of the β-lactamase genes described in Bacteroides was detected. Resistance to tetracycline and/or erythromycin was found among the three bacterial groups. Although tetQ genes were detected for several Prevotella and Porphyromonas strains, a unique ermF positive was revealed among Prevotella strains. The expression of resistance markers was not related with the polymorphism of their coding sequences. However, the finding of sequence signatures for conjugative transposons in the vicinities of tetQ and ermF suggests a mobilization potential that might have contributed to the spread of antimicrobial resistance genes.
URIhttp://hdl.handle.net/10261/115543
DOIhttp://dx.doi.org/10.1016/j.vetmic.2011.11.029
Identifiersdoi: 10.1016/j.vetmic.2011.11.029
issn: 0378-1135
Appears in Collections:(CBM) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.