English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/11523
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:


Breaking chirality in nonequilibrium systems on the lattice

AuthorsPazó, Diego ; Nicola, Ernesto M.
Keywords[PACS] Nonlinear dynamics and chaos
[PACS] Pattern selection; pattern formation
[PACS] Bifurcation theory
Issue DateJan-2008
PublisherInstitute of Physics Publishing
CitationEurophysics Letters 81(1): 10009 (2008)
AbstractWe study the dynamics of fronts in parametrically forced oscillating lattices. Using as a prototypical example the discrete Ginzburg-Landau equation, we show that much information about front bifurcations can be extracted by projecting onto a cylindrical phase space. Starting from a normal form that describes the nonequilibrium Ising-Bloch bifurcation in the continuum and using symmetry arguments, we derive a simple dynamical system that captures the dynamics of fronts in the lattice. We can expect our approach to be extended to other pattern-forming problems on lattices.
Description5 pages, 3 figures.-- PACS nrs.: 05.45.-a, 47.54.-r, 02.30.Oz.-- Available online on Dec 3, 2007.-- ArXiv pre-print available at: http://arxiv.org/abs/0801.2689
Publisher version (URL)http://dx.doi.org/10.1209/0295-5075/81/10009
Appears in Collections:(IFCA) Artículos
Files in This Item:
File Description SizeFormat 
epl_81_1_10009.pdf334,65 kBAdobe PDFThumbnail
Show full item record
Review this work

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.