English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/11517
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Title

Exponential localization of singular vectors in spatiotemporal chaos

AuthorsPazó, Diego ; López, Juan M. ; Rodríguez, Miguel A.
KeywordsChaos
Lyapunov methods
Nonlinear dynamical systems
Spatiotemporal phenomena
Vectors
High-dimensional chaos
Fluctuation phenomena
Weather analysis and prediction
Issue Date11-Mar-2009
PublisherAmerican Physical Society
CitationPhysical Review E 79(3): 036202 (2009)
AbstractIn a dynamical system the singular vector (SV) indicates which perturbation will exhibit maximal growth after a time interval τ. We show that in systems with spatiotemporal chaos the SV exponentially localizes in space. Under a suitable transformation, the SV can be described in terms of the Kardar-Parisi-Zhang equation with periodic noise. A scaling argument allows us to deduce a universal power law τ(−γ) for the localization of the SV. Moreover the same exponent γ characterizes the finite-τ deviation of the Lyapunov exponent in excellent agreement with simulations. Our results may help improve existing forecasting techniques.
Description5 pages, 4 figures.-- PACS nrs.: 05.45.Jn; 05.40.-a; 05.45.Ra; 92.60.Wc.
Publisher version (URL)http://dx.doi.org/10.1103/PhysRevE.79.036202
URIhttp://hdl.handle.net/10261/11517
DOI10.1103/PhysRevE.79.036202
ISSN1539-3755
Appears in Collections:(IFCA) Artículos
Files in This Item:
File Description SizeFormat 
Exponential localization.pdf223,09 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.